Spaces:
Sleeping
Sleeping
| # Lint as: python3 | |
| # Copyright 2020 The TensorFlow Authors. All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ============================================================================== | |
| """Examples of SavedModel export for tf-serving.""" | |
| from absl import app | |
| from absl import flags | |
| import tensorflow as tf | |
| from official.nlp.bert import bert_models | |
| from official.nlp.bert import configs | |
| flags.DEFINE_integer("sequence_length", None, | |
| "Sequence length to parse the tf.Example. If " | |
| "sequence_length > 0, add a signature for serialized " | |
| "tf.Example and define the parsing specification by the " | |
| "sequence_length.") | |
| flags.DEFINE_string("bert_config_file", None, | |
| "Bert configuration file to define core bert layers.") | |
| flags.DEFINE_string("model_checkpoint_path", None, | |
| "File path to TF model checkpoint.") | |
| flags.DEFINE_string("export_path", None, | |
| "Destination folder to export the serving SavedModel.") | |
| FLAGS = flags.FLAGS | |
| class BertServing(tf.keras.Model): | |
| """Bert transformer encoder model for serving.""" | |
| def __init__(self, bert_config, name_to_features=None, name="serving_model"): | |
| super(BertServing, self).__init__(name=name) | |
| self.encoder = bert_models.get_transformer_encoder( | |
| bert_config, sequence_length=None) | |
| self.name_to_features = name_to_features | |
| def call(self, inputs): | |
| input_word_ids = inputs["input_ids"] | |
| input_mask = inputs["input_mask"] | |
| input_type_ids = inputs["segment_ids"] | |
| encoder_outputs, _ = self.encoder( | |
| [input_word_ids, input_mask, input_type_ids]) | |
| return encoder_outputs | |
| def serve_body(self, input_ids, input_mask=None, segment_ids=None): | |
| if segment_ids is None: | |
| # Requires CLS token is the first token of inputs. | |
| segment_ids = tf.zeros_like(input_ids) | |
| if input_mask is None: | |
| # The mask has 1 for real tokens and 0 for padding tokens. | |
| input_mask = tf.where( | |
| tf.equal(input_ids, 0), tf.zeros_like(input_ids), | |
| tf.ones_like(input_ids)) | |
| inputs = dict( | |
| input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids) | |
| return self.call(inputs) | |
| def serve(self, input_ids, input_mask=None, segment_ids=None): | |
| outputs = self.serve_body(input_ids, input_mask, segment_ids) | |
| # Returns a dictionary to control SignatureDef output signature. | |
| return {"outputs": outputs[-1]} | |
| def serve_examples(self, inputs): | |
| features = tf.io.parse_example(inputs, self.name_to_features) | |
| for key in list(features.keys()): | |
| t = features[key] | |
| if t.dtype == tf.int64: | |
| t = tf.cast(t, tf.int32) | |
| features[key] = t | |
| return self.serve( | |
| features["input_ids"], | |
| input_mask=features["input_mask"] if "input_mask" in features else None, | |
| segment_ids=features["segment_ids"] | |
| if "segment_ids" in features else None) | |
| def export(cls, model, export_dir): | |
| if not isinstance(model, cls): | |
| raise ValueError("Invalid model instance: %s, it should be a %s" % | |
| (model, cls)) | |
| signatures = { | |
| "serving_default": | |
| model.serve.get_concrete_function( | |
| input_ids=tf.TensorSpec( | |
| shape=[None, None], dtype=tf.int32, name="inputs")), | |
| } | |
| if model.name_to_features: | |
| signatures[ | |
| "serving_examples"] = model.serve_examples.get_concrete_function( | |
| tf.TensorSpec(shape=[None], dtype=tf.string, name="examples")) | |
| tf.saved_model.save(model, export_dir=export_dir, signatures=signatures) | |
| def main(_): | |
| sequence_length = FLAGS.sequence_length | |
| if sequence_length is not None and sequence_length > 0: | |
| name_to_features = { | |
| "input_ids": tf.io.FixedLenFeature([sequence_length], tf.int64), | |
| "input_mask": tf.io.FixedLenFeature([sequence_length], tf.int64), | |
| "segment_ids": tf.io.FixedLenFeature([sequence_length], tf.int64), | |
| } | |
| else: | |
| name_to_features = None | |
| bert_config = configs.BertConfig.from_json_file(FLAGS.bert_config_file) | |
| serving_model = BertServing( | |
| bert_config=bert_config, name_to_features=name_to_features) | |
| checkpoint = tf.train.Checkpoint(model=serving_model.encoder) | |
| checkpoint.restore(FLAGS.model_checkpoint_path | |
| ).assert_existing_objects_matched().run_restore_ops() | |
| BertServing.export(serving_model, FLAGS.export_path) | |
| if __name__ == "__main__": | |
| flags.mark_flag_as_required("bert_config_file") | |
| flags.mark_flag_as_required("model_checkpoint_path") | |
| flags.mark_flag_as_required("export_path") | |
| app.run(main) | |