Spaces:
Runtime error
Runtime error
Fix app.py
Browse files
app.py
CHANGED
|
@@ -8,21 +8,29 @@ os.system('pip install torch==1.8.0+cu101 torchvision==0.9.0+cu101 -f https://do
|
|
| 8 |
# See https://detectron2.readthedocs.io/tutorials/install.html for instructions
|
| 9 |
os.system('pip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html')
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
import gradio as gr
|
| 12 |
import numpy as np
|
| 13 |
-
from transformers import LayoutLMv2FeatureExtractor,
|
| 14 |
from datasets import load_dataset
|
| 15 |
from PIL import Image, ImageDraw, ImageFont
|
| 16 |
|
| 17 |
-
ds = load_dataset("hf-internal-testing/fixtures_docvqa", split="test")
|
| 18 |
-
|
| 19 |
-
image = Image.open(ds[0]["file"]).convert("RGB")
|
| 20 |
-
image.save("document.png")
|
| 21 |
-
|
| 22 |
feature_extractor = LayoutLMv2FeatureExtractor.from_pretrained("microsoft/layoutlmv2-base-uncased")
|
| 23 |
-
tokenizer =
|
| 24 |
model = LayoutLMv2ForTokenClassification.from_pretrained("nielsr/layoutlmv2-finetuned-funsd")
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
def unnormalize_box(bbox, width, height):
|
| 27 |
return [
|
| 28 |
width * (bbox[0] / 1000),
|
|
@@ -78,10 +86,10 @@ article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2012.147
|
|
| 78 |
examples =[['document.png']]
|
| 79 |
|
| 80 |
iface = gr.Interface(fn=process_image,
|
| 81 |
-
inputs=gr.inputs.Image(
|
| 82 |
-
outputs=gr.outputs.Image(type=
|
| 83 |
title=title,
|
| 84 |
description=description,
|
| 85 |
article=article,
|
| 86 |
examples=examples)
|
| 87 |
-
iface.launch()
|
|
|
|
| 8 |
# See https://detectron2.readthedocs.io/tutorials/install.html for instructions
|
| 9 |
os.system('pip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html')
|
| 10 |
|
| 11 |
+
## install PyTesseract
|
| 12 |
+
os.system('sudo apt install tesseract-ocr')
|
| 13 |
+
os.system('pip install -q pytesseract')
|
| 14 |
+
|
| 15 |
import gradio as gr
|
| 16 |
import numpy as np
|
| 17 |
+
from transformers import LayoutLMv2FeatureExtractor, LayoutLMv2TokenizerFast, LayoutLMv2ForTokenClassification
|
| 18 |
from datasets import load_dataset
|
| 19 |
from PIL import Image, ImageDraw, ImageFont
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
feature_extractor = LayoutLMv2FeatureExtractor.from_pretrained("microsoft/layoutlmv2-base-uncased")
|
| 22 |
+
tokenizer = LayoutLMv2TokenizerFast.from_pretrained("microsoft/layoutlmv2-base-uncased")
|
| 23 |
model = LayoutLMv2ForTokenClassification.from_pretrained("nielsr/layoutlmv2-finetuned-funsd")
|
| 24 |
|
| 25 |
+
# load image example
|
| 26 |
+
dataset = load_dataset("nielsr/funsd", split="test")
|
| 27 |
+
image = Image.open(dataset[0]["image_path"]).convert("RGB")
|
| 28 |
+
image.save("document.png")
|
| 29 |
+
# define id2label, label2color
|
| 30 |
+
labels = dataset.features['ner_tags'].feature.names
|
| 31 |
+
id2label = {v: k for v, k in enumerate(labels)}
|
| 32 |
+
label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'}
|
| 33 |
+
|
| 34 |
def unnormalize_box(bbox, width, height):
|
| 35 |
return [
|
| 36 |
width * (bbox[0] / 1000),
|
|
|
|
| 86 |
examples =[['document.png']]
|
| 87 |
|
| 88 |
iface = gr.Interface(fn=process_image,
|
| 89 |
+
inputs=gr.inputs.Image(type="pil"),
|
| 90 |
+
outputs=gr.outputs.Image(type="pil", label="annotated image"),
|
| 91 |
title=title,
|
| 92 |
description=description,
|
| 93 |
article=article,
|
| 94 |
examples=examples)
|
| 95 |
+
iface.launch(debug=True)
|