Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from transformers import pipeline
|
| 3 |
|
| 4 |
st.set_page_config(page_title="Common NLP Tasks")
|
| 5 |
st.title("Common NLP Tasks")
|
|
@@ -13,7 +13,8 @@ option = st.sidebar.radio('', ['Extractive question answering', 'Text summarizat
|
|
| 13 |
|
| 14 |
@st.cache(show_spinner=False, allow_output_mutation=True)
|
| 15 |
def question_model():
|
| 16 |
-
|
|
|
|
| 17 |
return question_answerer
|
| 18 |
|
| 19 |
@st.cache(show_spinner=False, allow_output_mutation=True)
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForQuestionAnswering
|
| 3 |
|
| 4 |
st.set_page_config(page_title="Common NLP Tasks")
|
| 5 |
st.title("Common NLP Tasks")
|
|
|
|
| 13 |
|
| 14 |
@st.cache(show_spinner=False, allow_output_mutation=True)
|
| 15 |
def question_model():
|
| 16 |
+
tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
|
| 17 |
+
model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")
|
| 18 |
return question_answerer
|
| 19 |
|
| 20 |
@st.cache(show_spinner=False, allow_output_mutation=True)
|