import random from collections.abc import Mapping from uuid import uuid4 from openai import OpenAI import gradio as gr import base64 import mimetypes import copy import os # Workaround for PyCharm debugger + uvicorn compatibility error: # TypeError: _patch_asyncio..run() got an unexpected keyword argument 'loop_factory' DEBUG = False if DEBUG is True: # or sys.gettrace() is not None: # Debugger is attached import asyncio _original_run = asyncio.run def _patched_run(main, **kwargs): kwargs.pop('loop_factory', None) # Remove unsupported arg return _original_run(main, **kwargs) asyncio.run = _patched_run from theme import apriel from utils import COMMUNITY_POSTFIX_URL, get_model_config, check_format, models_config, \ logged_event_handler, DEBUG_MODE, DEBUG_MODEL, log_debug, log_info, log_error, log_warning from log_chat import log_chat DEFAULT_MODEL_TEMPERATURE = 1.0 BUTTON_WIDTH = 160 DEFAULT_OPT_OUT_VALUE = DEBUG_MODE # If DEBUG_MODEL is True, use an alternative model (without reasoning) for testing # DEFAULT_MODEL_NAME = "Apriel-1.5-15B-thinker" if not DEBUG_MODEL else "Apriel-1.5-15B-thinker" DEFAULT_MODEL_NAME = "Apriel-1.6-15B-Thinker" SHOW_BANNER = False INFO_BANNER_MARKDOWN = """ """ NEW_MODEL_BANNER_MARKDOWN = """ """ BANNER_MARKDOWN = NEW_MODEL_BANNER_MARKDOWN BUTTON_ENABLED = gr.update(interactive=True) BUTTON_DISABLED = gr.update(interactive=False) INPUT_ENABLED = gr.update(interactive=True) INPUT_DISABLED = gr.update(interactive=False) DROPDOWN_ENABLED = gr.update(interactive=True) DROPDOWN_DISABLED = gr.update(interactive=False) SEND_BUTTON_ENABLED = gr.update(interactive=True, visible=True) SEND_BUTTON_DISABLED = gr.update(interactive=True, visible=False) STOP_BUTTON_ENABLED = gr.update(interactive=True, visible=True) STOP_BUTTON_DISABLED = gr.update(interactive=True, visible=False) chat_start_count = 0 model_config = {} openai_client = None USE_RANDOM_ENDPOINT = False endpoint_rotation_count = 0 # Maximum number of image messages allowed per request MAX_IMAGE_MESSAGES = 5 def app_loaded(state, request: gr.Request): message_html = setup_model(DEFAULT_MODEL_NAME, intial=False) state['session'] = request.session_hash if request else uuid4().hex log_debug(f"app_loaded() --> Session: {state['session']}") return state, message_html def update_model_and_clear_chat(model_name): actual_model_name = model_name.replace("Model: ", "") desc = setup_model(actual_model_name) return desc, [] def setup_model(model_key, intial=False): global model_config, openai_client, endpoint_rotation_count model_config = get_model_config(model_key) log_debug(f"update_model() --> Model config: {model_config}") # ENVIRONMENT VARIABLE CONFIGURATION base_url = os.environ.get("API_BASE_URL") api_key = os.environ.get("API_KEY") if not base_url: raise ValueError("API_BASE_URL environment variable not set") if not api_key: raise ValueError("API_KEY environment variable not set") openai_client = OpenAI( api_key=api_key, base_url=base_url ) model_config['base_url'] = base_url log_debug(f"Switched to model {model_key} using endpoint {base_url} (ENV VARS)") _model_hf_name = model_config.get("MODEL_HF_URL").split('https://huggingface.co/')[1] _link = f"{_model_hf_name}" _description = f"We'd love to hear your thoughts on the model. Click here to provide feedback - {_link}" if intial: return else: return _description def chat_started(): # outputs: model_dropdown, user_input, send_btn, stop_btn, clear_btn, reasoning_effort return (DROPDOWN_DISABLED, gr.update(value="", interactive=False), SEND_BUTTON_DISABLED, STOP_BUTTON_ENABLED, BUTTON_DISABLED, gr.update(interactive=False)) def chat_finished(): # outputs: model_dropdown, user_input, send_btn, stop_btn, clear_btn, reasoning_effort return DROPDOWN_ENABLED, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, gr.update(interactive=True) def stop_chat(state): state["stop_flag"] = True gr.Info("Chat stopped") return state def toggle_opt_out(state, checkbox): state["opt_out"] = checkbox return state def run_chat_inference(history, message, state, reasoning_effort="medium"): global chat_start_count state["is_streaming"] = True state["stop_flag"] = False error = None # ENVIRONMENT VARIABLE MODEL model_name = os.environ.get("API_MODEL") if not model_name: raise ValueError("API_MODEL environment variable not set") # model_name = model_config.get('MODEL_NAME') temperature = model_config.get('TEMPERATURE', DEFAULT_MODEL_TEMPERATURE) output_tag_start = model_config.get('OUTPUT_TAG_START', "[BEGIN FINAL RESPONSE]") output_tag_end = model_config.get('OUTPUT_TAG_END', "[END FINAL RESPONSE]") output_stop_token = model_config.get('OUTPUT_STOP_TOKEN', "<|end|>") # Reinitialize the OpenAI client with a random endpoint from the list setup_model(model_config.get('MODEL_KEY')) log_info(f"Using model {model_name} (temperature: {temperature}, reasoning_effort: {reasoning_effort}) with endpoint {model_config.get('base_url')}") if len(history) == 0: state["chat_id"] = uuid4().hex if openai_client is None: log_info("Client UI is stale, letting user know to refresh the page") gr.Warning("Client UI is stale, please refresh the page") return history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state # files will be the newly added files from the user files = [] # outputs: model_dropdown, user_input, send_btn, stop_btn, clear_btn, session_state log_debug(f"{'-' * 80}") log_debug(f"chat_fn() --> Message: {message}") log_debug(f"chat_fn() --> History: {history}") # We have multimodal input in this case if isinstance(message, Mapping): files = message.get("files") or [] message = message.get("text") or "" log_debug(f"chat_fn() --> Message (text only): {message}") log_debug(f"chat_fn() --> Files: {files}") # Validate that any uploaded files are images if len(files) > 0: invalid_files = [] for path in files: try: mime, _ = mimetypes.guess_type(path) mime = mime or "" if not mime.startswith("image/"): invalid_files.append((os.path.basename(path), mime or "unknown")) except Exception as e: log_error(f"Failed to inspect file '{path}': {e}") invalid_files.append((os.path.basename(path), "unknown")) if invalid_files: msg = "Only image files are allowed. Invalid uploads: " + \ ", ".join([f"{p} (type: {m})" for p, m in invalid_files]) log_warning(msg) gr.Warning(msg) yield history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state return history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state # Enforce maximum number of files/images per request if len(files) > MAX_IMAGE_MESSAGES: gr.Warning(f"Too many images provided; keeping only the first {MAX_IMAGE_MESSAGES} file(s).") files = files[:MAX_IMAGE_MESSAGES] try: # Check if the message is empty if not message.strip() and len(files) == 0: gr.Info("Please enter a message before sending") yield history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state return history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state chat_start_count = chat_start_count + 1 user_messages_count = sum(1 for item in history if isinstance(item, dict) and item.get("role") == "user" and isinstance(item.get("content"), str)) log_info(f"chat_start_count: {chat_start_count}, turns: {user_messages_count + 1}, model: {model_name}") is_reasoning = model_config.get("REASONING") # Remove any assistant messages with metadata from history for multiple turns log_debug(f"Initial History: {history}") check_format(history, "messages") # Build UI history: add text (if any) and per-file image placeholders {"path": ...} # Build API parts separately later to avoid Gradio issues with arrays in content if len(files) == 0: history.append({"role": "user", "content": message}) else: if message.strip(): history.append({"role": "user", "content": message}) for path in files: history.append({"role": "user", "content": {"path": path}}) log_debug(f"History with user message: {history}") check_format(history, "messages") # Create the streaming response try: history_no_thoughts = [item for item in history if not (isinstance(item, dict) and item.get("role") == "assistant" and isinstance(item.get("metadata"), dict) and item.get("metadata", {}).get("title") is not None)] log_debug(f"Updated History: {history_no_thoughts}") check_format(history_no_thoughts, "messages") log_debug(f"history_no_thoughts with user message: {history_no_thoughts}") # Build API-specific messages: # - Convert any UI image placeholders {"path": ...} to image_url parts # - Convert any user string content that is a valid file path to image_url parts # - Coalesce consecutive image paths into a single image-only user message api_messages = [] image_parts_buffer = [] def flush_image_buffer(): if len(image_parts_buffer) > 0: api_messages.append({"role": "user", "content": list(image_parts_buffer)}) image_parts_buffer.clear() def to_image_part(path: str): try: mime, _ = mimetypes.guess_type(path) mime = mime or "application/octet-stream" with open(path, "rb") as f: b64 = base64.b64encode(f.read()).decode("utf-8") data_url = f"data:{mime};base64,{b64}" return {"type": "image_url", "image_url": {"url": data_url}} except Exception as e: log_error(f"Failed to load file '{path}': {e}") return None def normalize_msg(msg): # Returns (role, content, as_dict) where as_dict is a message dict suitable to pass through when unmodified if isinstance(msg, dict): return msg.get("role"), msg.get("content"), msg # Gradio ChatMessage-like object role = getattr(msg, "role", None) content = getattr(msg, "content", None) if role is not None: return role, content, {"role": role, "content": content} return None, None, msg for m in copy.deepcopy(history_no_thoughts): role, content, as_dict = normalize_msg(m) # Unknown structure: pass through if role is None: flush_image_buffer() api_messages.append(as_dict) continue # Assistant messages pass through as-is if role == "assistant": flush_image_buffer() api_messages.append(as_dict) continue # Only user messages have potential image paths to convert if role == "user": # Case A: {'path': ...} if isinstance(content, dict) and isinstance(content.get("path"), str): p = content["path"] part = to_image_part(p) if os.path.isfile(p) else None if part: image_parts_buffer.append(part) else: flush_image_buffer() api_messages.append({"role": "user", "content": str(content)}) continue # Case B: string or tuple content that may be a file path if isinstance(content, str): if os.path.isfile(content): part = to_image_part(content) if part: image_parts_buffer.append(part) continue # Not a file path: pass through as text flush_image_buffer() api_messages.append({"role": "user", "content": content}) continue if isinstance(content, tuple): # Common case: a single-element tuple containing a path string tuple_items = list(content) tmp_parts = [] text_accum = [] for item in tuple_items: if isinstance(item, str) and os.path.isfile(item): part = to_image_part(item) if part: tmp_parts.append(part) else: text_accum.append(item) else: text_accum.append(str(item)) if tmp_parts: flush_image_buffer() api_messages.append({"role": "user", "content": tmp_parts}) if not text_accum: continue if text_accum: flush_image_buffer() api_messages.append({"role": "user", "content": "\n".join(text_accum)}) continue # Case C: list content if isinstance(content, list): # If it's already a list of parts, let it pass through all_dicts = all(isinstance(c, dict) for c in content) if all_dicts: flush_image_buffer() api_messages.append({"role": "user", "content": content}) continue # It might be a list of strings (paths/text). Convert string paths to image parts, others to text parts tmp_parts = [] text_accum = [] def flush_text_accum(): if text_accum: api_messages.append({"role": "user", "content": "\n".join(text_accum)}) text_accum.clear() for item in content: if isinstance(item, str) and os.path.isfile(item): part = to_image_part(item) if part: tmp_parts.append(part) else: text_accum.append(item) else: text_accum.append(str(item)) if tmp_parts: flush_image_buffer() api_messages.append({"role": "user", "content": tmp_parts}) if text_accum: flush_text_accum() continue # Fallback: pass through flush_image_buffer() api_messages.append(as_dict) continue # Other roles flush_image_buffer() api_messages.append(as_dict) # Flush any trailing images flush_image_buffer() log_debug(f"sending api_messages to model {model_name}: {api_messages}") # Ensure we don't send too many images (count only messages whose content is a list of parts) image_msg_indices = [ i for i, msg in enumerate(api_messages) if isinstance(msg, dict) and isinstance(msg.get('content'), list) ] image_count = len(image_msg_indices) if image_count > MAX_IMAGE_MESSAGES: # Remove oldest image messages until we have MAX_IMAGE_MESSAGES or fewer to_remove = image_count - MAX_IMAGE_MESSAGES removed = 0 for idx in image_msg_indices: if removed >= to_remove: break # Pop considering prior removals shift indices api_messages.pop(idx - removed) removed += 1 gr.Warning(f"Too many images provided; keeping the latest {MAX_IMAGE_MESSAGES} and dropped {removed} older image message(s).") stream = openai_client.chat.completions.create( model=model_name, messages=api_messages, temperature=temperature, top_p=1.0, reasoning_effort=reasoning_effort, stream=True ) except Exception as e: log_error(f"Error:\n\t{e}\n\tInference failed for model {model_name} and endpoint {model_config['base_url']}") error = str(e) yield ([{"role": "assistant", "content": "😔 The model is unavailable at the moment. Please try again later."}], INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state) if state["opt_out"] is not True: log_chat(chat_id=state["chat_id"], session_id=state["session"], model_name=model_name, prompt=message, history=history, info={"is_reasoning": model_config.get("REASONING"), "temperature": temperature, "stopped": True, "error": str(e)}, ) else: log_info(f"User opted out of chat history. Not logging chat. model: {model_name}") return history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state if is_reasoning: history.append(gr.ChatMessage( role="assistant", content="Thinking...", metadata={"title": "🧠 Thought"} )) log_debug(f"History added thinking: {history}") check_format(history, "messages") else: history.append(gr.ChatMessage( role="assistant", content="", )) log_debug(f"History added empty assistant: {history}") check_format(history, "messages") output_reasoning = "" output_content = "" completion_started = False for chunk in stream: if state["stop_flag"]: log_debug(f"chat_fn() --> Stopping streaming...") break # Exit the loop if the stop flag is set delta = chunk.choices[0].delta new_reasoning = getattr(delta, "reasoning_content", "") or "" new_content = getattr(delta, "content", "") or "" output_reasoning += new_reasoning output_content += new_content if is_reasoning: # Update the reasoning bubble history[-1 if not completion_started else -2] = gr.ChatMessage( role="assistant", content=output_reasoning, metadata={"title": "🧠 Thought"} ) # Handle the content bubble # Check if we have actual content or if we should start the content bubble if new_content or (output_content and not completion_started): # Clean up stop tokens from the content if present if output_tag_end and output_content.endswith(output_tag_end): output_content = output_content.replace(output_tag_end, "") if output_stop_token and output_content.endswith(output_stop_token): output_content = output_content.replace(output_stop_token, "") if not completion_started: completion_started = True history.append(gr.ChatMessage( role="assistant", content=output_content )) else: history[-1] = gr.ChatMessage( role="assistant", content=output_content ) else: if output_content.endswith("<|end|>"): output_content = output_content.replace("<|end|>", "") if output_content.endswith("<|end|>\n"): output_content = output_content.replace("<|end|>\n", "") history[-1] = gr.ChatMessage( role="assistant", content=output_content ) # log_message(f"Yielding messages: {history}") yield history, INPUT_DISABLED, SEND_BUTTON_DISABLED, STOP_BUTTON_ENABLED, BUTTON_DISABLED, state log_debug(f"Final History: {history}") check_format(history, "messages") yield history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state finally: if error is None: log_debug(f"chat_fn() --> Finished streaming. {chat_start_count} chats started.") if state["opt_out"] is not True: log_chat(chat_id=state["chat_id"], session_id=state["session"], model_name=model_name, prompt=message, history=history, info={"is_reasoning": model_config.get("REASONING"), "temperature": temperature, "stopped": state["stop_flag"]}, ) else: log_info(f"User opted out of chat history. Not logging chat. model: {model_name}") state["is_streaming"] = False state["stop_flag"] = False return history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state log_info(f"Gradio version: {gr.__version__}") title = None description = None theme = apriel with open('styles.css', 'r') as f: custom_css = f.read() with gr.Blocks(theme=theme, css=custom_css) as demo: session_state = gr.State(value={ "is_streaming": False, "stop_flag": False, "chat_id": None, "session": None, "opt_out": DEFAULT_OPT_OUT_VALUE, "agreed": False, }) # Store session state as a dictionary gr.HTML(f""" """, elem_classes="css-styles") if SHOW_BANNER: with gr.Row(variant="compact", elem_classes=["responsive-row", "no-padding"], ): with gr.Column(): gr.Markdown(BANNER_MARKDOWN, elem_classes="banner-message") with gr.Row(variant="panel", elem_classes="responsive-row", visible=False): with gr.Column(scale=1, min_width=400, elem_classes="model-dropdown-container"): model_dropdown = gr.Dropdown( choices=[f"Model: {model}" for model in models_config.keys()], value=f"Model: {DEFAULT_MODEL_NAME}", label=None, interactive=True, container=False, scale=0, min_width=400 ) with gr.Column(scale=4, min_width=0): feedback_message_html = gr.HTML(description, elem_classes="model-message") with gr.Column(visible=True, elem_classes="agreement-overlay") as agreement_overlay: with gr.Column(elem_classes="form"): gr.Markdown("## Privacy Agreement") gr.Markdown(""" By using this app, you agree to the following terms: We record all content you submit and all model outputs (“Data”), including text, images, files, and minimal request metadata (timestamp & technical logs). We do not store IP addresses, cookies, or account identifiers, so we cannot link any submission back to a particular person. However, the text you submit may itself contain personal information (e.g., names, Social Security numbers). Please do not include sensitive personal data in your prompts. Any such information will be subject to our redaction process before any public release. Data is used for research, safety evaluation, and to improve the Service. We reserve the right to publish, share, or redistribute redacted versions of the Data under a Creative Commons Attribution (CC‑BY) or similar open license. Before any public release, we apply automated and manual redaction to remove private keys, names, contact details, and other identifiers that may appear in the content. Because we do not track user identities, individual submissions cannot be deleted or withdrawn once made. If you do not want your content used or released, do not submit it. """) agree_btn = gr.Button("I Agree", variant="primary") with gr.Column(visible=True) as main_app_area: chatbot = gr.Chatbot( type="messages", height="calc(100svh - 320px)", max_height="calc(100svh - 320px)", elem_classes="chatbot", ) with gr.Row(): with gr.Column(scale=10, min_width=400, elem_classes="user-input-container"): with gr.Row(): # user_input = gr.MultimodalTextbox( # interactive=True, # container=False, # file_count="multiple", # placeholder="Type your message here and press Enter or upload file...", # show_label=False, # sources=["upload"], # max_plain_text_length=100000, # max_lines=10 # ) # Original text-only input user_input = gr.Textbox( show_label=False, placeholder="Type your message here and press Enter", container=False, max_lines=10 ) with gr.Column(scale=1, min_width=BUTTON_WIDTH * 2 + 20): with gr.Row(): with gr.Column(scale=1, min_width=BUTTON_WIDTH, elem_classes="send-button-container"): send_btn = gr.Button("Send", variant="primary", elem_classes="control-button") stop_btn = gr.Button("Stop", variant="cancel", elem_classes="control-button", visible=False) with gr.Column(scale=1, min_width=BUTTON_WIDTH, elem_classes="clear-button-container"): clear_btn = gr.ClearButton(chatbot, value="New Chat", variant="secondary", elem_classes="control-button") with gr.Row(): with gr.Column(scale=1): reasoning_effort_radio = gr.Radio( choices=["low", "medium", "high"], value="medium", label="Reasoning Effort", interactive=True, container=True, elem_classes="reasoning-radio" ) def agree_to_terms(state): log_info("Privacy agreement accepted by user") state["agreed"] = True return gr.update(visible=False), state # Use JavaScript to directly hide the overlay - bypasses Gradio's state management # which can be unreliable on HuggingFace Spaces agree_btn.click( agree_to_terms, inputs=[session_state], outputs=[agreement_overlay, session_state], queue=False, js="() => { document.querySelector('.agreement-overlay').style.display = 'none'; }" ) gr.on( triggers=[send_btn.click, user_input.submit], fn=run_chat_inference, # this generator streams results. do not use logged_event_handler wrapper inputs=[chatbot, user_input, session_state, reasoning_effort_radio], outputs=[chatbot, user_input, send_btn, stop_btn, clear_btn, session_state], concurrency_limit=4, api_name=False ).then( fn=chat_finished, inputs=None, outputs=[model_dropdown, user_input, send_btn, stop_btn, clear_btn, reasoning_effort_radio], queue=False) # In parallel, disable or update the UI controls gr.on( triggers=[send_btn.click, user_input.submit], fn=chat_started, inputs=None, outputs=[model_dropdown, user_input, send_btn, stop_btn, clear_btn, reasoning_effort_radio], queue=False, show_progress='hidden', api_name=False ) stop_btn.click( fn=stop_chat, inputs=[session_state], outputs=[session_state], api_name=False ) # Ensure the model is reset to default on page reload demo.load( fn=logged_event_handler( log_msg="Browser session started", event_handler=app_loaded ), inputs=[session_state], outputs=[session_state, feedback_message_html], queue=True, api_name=False ) model_dropdown.change( fn=update_model_and_clear_chat, inputs=[model_dropdown], outputs=[feedback_message_html, chatbot], api_name=False ) demo.queue(default_concurrency_limit=2).launch(ssr_mode=False, show_api=False, max_file_size="10mb") log_info("Gradio app launched")