Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| # ***************************************************************************** | |
| # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Redistribution and use in source and binary forms, with or without | |
| # modification, are permitted provided that the following conditions are met: | |
| # * Redistributions of source code must retain the above copyright | |
| # notice, this list of conditions and the following disclaimer. | |
| # * Redistributions in binary form must reproduce the above copyright | |
| # notice, this list of conditions and the following disclaimer in the | |
| # documentation and/or other materials provided with the distribution. | |
| # * Neither the name of the NVIDIA CORPORATION nor the | |
| # names of its contributors may be used to endorse or promote products | |
| # derived from this software without specific prior written permission. | |
| # | |
| # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND | |
| # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
| # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
| # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY | |
| # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
| # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
| # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | |
| # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
| # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
| # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
| # | |
| # ***************************************************************************** | |
| import torch | |
| import numpy as np | |
| from scipy.signal import get_window | |
| import librosa.util as librosa_util | |
| def window_sumsquare(window, n_frames, hop_length=200, win_length=800, | |
| n_fft=800, dtype=np.float32, norm=None): | |
| """ | |
| # from librosa 0.6 | |
| Compute the sum-square envelope of a window function at a given hop length. | |
| This is used to estimate modulation effects induced by windowing | |
| observations in short-time fourier transforms. | |
| Parameters | |
| ---------- | |
| window : string, tuple, number, callable, or list-like | |
| Window specification, as in `get_window` | |
| n_frames : int > 0 | |
| The number of analysis frames | |
| hop_length : int > 0 | |
| The number of samples to advance between frames | |
| win_length : [optional] | |
| The length of the window function. By default, this matches `n_fft`. | |
| n_fft : int > 0 | |
| The length of each analysis frame. | |
| dtype : np.dtype | |
| The data type of the output | |
| Returns | |
| ------- | |
| wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))` | |
| The sum-squared envelope of the window function | |
| """ | |
| if win_length is None: | |
| win_length = n_fft | |
| n = n_fft + hop_length * (n_frames - 1) | |
| x = np.zeros(n, dtype=dtype) | |
| # Compute the squared window at the desired length | |
| win_sq = get_window(window, win_length, fftbins=True) | |
| win_sq = librosa_util.normalize(win_sq, norm=norm)**2 | |
| win_sq = librosa_util.pad_center(win_sq, n_fft) | |
| # Fill the envelope | |
| for i in range(n_frames): | |
| sample = i * hop_length | |
| x[sample:min(n, sample + n_fft)] += win_sq[:max(0, min(n_fft, n - sample))] | |
| return x | |
| def griffin_lim(magnitudes, stft_fn, n_iters=30): | |
| """ | |
| PARAMS | |
| ------ | |
| magnitudes: spectrogram magnitudes | |
| stft_fn: STFT class with transform (STFT) and inverse (ISTFT) methods | |
| """ | |
| angles = np.angle(np.exp(2j * np.pi * np.random.rand(*magnitudes.size()))) | |
| angles = angles.astype(np.float32) | |
| angles = torch.autograd.Variable(torch.from_numpy(angles)) | |
| signal = stft_fn.inverse(magnitudes, angles).squeeze(1) | |
| for i in range(n_iters): | |
| _, angles = stft_fn.transform(signal) | |
| signal = stft_fn.inverse(magnitudes, angles).squeeze(1) | |
| return signal | |
| def dynamic_range_compression(x, C=1, clip_val=1e-5): | |
| """ | |
| PARAMS | |
| ------ | |
| C: compression factor | |
| """ | |
| return torch.log(torch.clamp(x, min=clip_val) * C) | |
| def dynamic_range_decompression(x, C=1): | |
| """ | |
| PARAMS | |
| ------ | |
| C: compression factor used to compress | |
| """ | |
| return torch.exp(x) / C | |