Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| # ***************************************************************************** | |
| # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Redistribution and use in source and binary forms, with or without | |
| # modification, are permitted provided that the following conditions are met: | |
| # * Redistributions of source code must retain the above copyright | |
| # notice, this list of conditions and the following disclaimer. | |
| # * Redistributions in binary form must reproduce the above copyright | |
| # notice, this list of conditions and the following disclaimer in the | |
| # documentation and/or other materials provided with the distribution. | |
| # * Neither the name of the NVIDIA CORPORATION nor the | |
| # names of its contributors may be used to endorse or promote products | |
| # derived from this software without specific prior written permission. | |
| # | |
| # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND | |
| # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
| # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
| # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY | |
| # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
| # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
| # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | |
| # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
| # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
| # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
| # | |
| # ***************************************************************************** | |
| import sys | |
| from typing import Optional | |
| from os.path import abspath, dirname | |
| import torch | |
| # enabling modules discovery from global entrypoint | |
| sys.path.append(abspath(dirname(__file__)+'/')) | |
| from python.fastpitch.fastpitch import FastPitch as _FastPitch | |
| # from python.model_fp import WaveGlow | |
| def parse_model_args(model_name, symbols_alphabet, parser, add_help=False): | |
| from python.fastpitch.arg_parser import parse_fastpitch_args | |
| return parse_fastpitch_args(symbols_alphabet, parser, add_help) | |
| def batchnorm_to_float(module): | |
| """Converts batch norm to FP32""" | |
| if isinstance(module, torch.nn.modules.batchnorm._BatchNorm): | |
| module.float() | |
| for child in module.children(): | |
| batchnorm_to_float(child) | |
| return module | |
| def init_bn(module): | |
| if isinstance(module, torch.nn.modules.batchnorm._BatchNorm): | |
| if module.affine: | |
| module.weight.data.uniform_() | |
| for child in module.children(): | |
| init_bn(child) | |
| def get_model(model_name, model_config, device, logger, uniform_initialize_bn_weight=False, forward_is_infer=False, jitable=False): | |
| model = None | |
| model_config["device"] = device | |
| if model_name == 'WaveGlow': | |
| if forward_is_infer: | |
| class WaveGlow__forward_is_infer(WaveGlow): | |
| def forward(self, spect, sigma=1.0): | |
| return self.infer(spect, sigma) | |
| model = WaveGlow__forward_is_infer(**model_config, logger=logger) | |
| else: | |
| model = WaveGlow(**model_config, logger=logger) | |
| elif model_name == 'FastPitch': | |
| model_config["padding_idx"] = 0 | |
| model_config["pitch_embedding_kernel_size"] = 3 | |
| model_config["n_speakers"] = 5 | |
| model_config["speaker_emb_weight"] = 1.0 | |
| if forward_is_infer: | |
| class FastPitch__forward_is_infer(_FastPitch): | |
| def forward(self, inputs, input_lengths=None, pace: float = 1.0, | |
| dur_tgt: Optional[torch.Tensor] = None, | |
| pitch_tgt: Optional[torch.Tensor] = None, | |
| pitch_transform=None, device=None): | |
| return self.infer_advanced(inputs, input_lengths, pace=pace, | |
| dur_tgt=dur_tgt, pitch_tgt=pitch_tgt, | |
| pitch_transform=pitch_transform) | |
| model = FastPitch__forward_is_infer(**model_config) | |
| else: | |
| model = _FastPitch(**model_config) | |
| else: | |
| raise NotImplementedError(model_name) | |
| if uniform_initialize_bn_weight: | |
| init_bn(model) | |
| return model.to(device) | |
| def get_model_config(model_name, args): | |
| if model_name == 'WaveGlow': | |
| model_config = dict( | |
| n_mel_channels=args.n_mel_channels, | |
| n_flows=args.flows, | |
| n_group=args.groups, | |
| n_early_every=args.early_every, | |
| n_early_size=args.early_size, | |
| WN_config=dict( | |
| n_layers=args.wn_layers, | |
| kernel_size=args.wn_kernel_size, | |
| n_channels=args.wn_channels | |
| ) | |
| ) | |
| return model_config | |
| elif model_name == 'FastPitch': | |
| model_config = dict( | |
| # io | |
| n_mel_channels=args.n_mel_channels, | |
| max_seq_len=args.max_seq_len, | |
| # symbols | |
| n_symbols=args.n_symbols, | |
| symbols_embedding_dim=args.symbols_embedding_dim, | |
| # input FFT | |
| in_fft_n_layers=args.in_fft_n_layers, | |
| in_fft_n_heads=args.in_fft_n_heads, | |
| in_fft_d_head=args.in_fft_d_head, | |
| in_fft_conv1d_kernel_size=args.in_fft_conv1d_kernel_size, | |
| in_fft_conv1d_filter_size=args.in_fft_conv1d_filter_size, | |
| in_fft_output_size=args.in_fft_output_size, | |
| p_in_fft_dropout=args.p_in_fft_dropout, | |
| p_in_fft_dropatt=args.p_in_fft_dropatt, | |
| p_in_fft_dropemb=args.p_in_fft_dropemb, | |
| # output FFT | |
| out_fft_n_layers=args.out_fft_n_layers, | |
| out_fft_n_heads=args.out_fft_n_heads, | |
| out_fft_d_head=args.out_fft_d_head, | |
| out_fft_conv1d_kernel_size=args.out_fft_conv1d_kernel_size, | |
| out_fft_conv1d_filter_size=args.out_fft_conv1d_filter_size, | |
| out_fft_output_size=args.out_fft_output_size, | |
| p_out_fft_dropout=args.p_out_fft_dropout, | |
| p_out_fft_dropatt=args.p_out_fft_dropatt, | |
| p_out_fft_dropemb=args.p_out_fft_dropemb, | |
| # duration predictor | |
| dur_predictor_kernel_size=args.dur_predictor_kernel_size, | |
| dur_predictor_filter_size=args.dur_predictor_filter_size, | |
| p_dur_predictor_dropout=args.p_dur_predictor_dropout, | |
| dur_predictor_n_layers=args.dur_predictor_n_layers, | |
| # pitch predictor | |
| pitch_predictor_kernel_size=args.pitch_predictor_kernel_size, | |
| pitch_predictor_filter_size=args.pitch_predictor_filter_size, | |
| p_pitch_predictor_dropout=args.p_pitch_predictor_dropout, | |
| pitch_predictor_n_layers=args.pitch_predictor_n_layers, | |
| ) | |
| return model_config | |
| else: | |
| raise NotImplementedError(model_name) | |