Spaces:
Sleeping
Sleeping
quangho-dev
commited on
Commit
·
90f195f
1
Parent(s):
28b7154
Add application file
Browse files
app.py
ADDED
|
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import re
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def predict_house_price(description, location, area):
|
| 6 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
| 7 |
+
messages = [ # Change below!
|
| 8 |
+
{
|
| 9 |
+
"role": "user",
|
| 10 |
+
"content": f"Mô tả: {description}\nĐịa chỉ: {location}\nDiện tích: {area}",
|
| 11 |
+
},
|
| 12 |
+
]
|
| 13 |
+
input_ids = tokenizer.apply_chat_template(
|
| 14 |
+
messages,
|
| 15 |
+
add_generation_prompt=True,
|
| 16 |
+
return_tensors="pt",
|
| 17 |
+
).to("cuda")
|
| 18 |
+
|
| 19 |
+
# from transformers import TextStreamer
|
| 20 |
+
# text_streamer = TextStreamer(tokenizer, skip_prompt = True)
|
| 21 |
+
# _ = model.generate(input_ids, streamer = text_streamer, max_new_tokens = 128, pad_token_id = tokenizer.eos_token_id)
|
| 22 |
+
# return extract_price(_)
|
| 23 |
+
output = model.generate(
|
| 24 |
+
input_ids, max_new_tokens=256, pad_token_id=tokenizer.eos_token_id
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
decoded = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 28 |
+
return f"{extract_price(decoded)} tỷ"
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def extract_price(decoded):
|
| 32 |
+
# match number like 6.950.000.000, or 6950000000, or 6.95B, etc.
|
| 33 |
+
price_pattern = r"[\d\.\,]+"
|
| 34 |
+
matches = re.findall(price_pattern, decoded)
|
| 35 |
+
last_item = matches[-1]
|
| 36 |
+
return last_item
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
from unsloth import FastLanguageModel
|
| 40 |
+
import torch
|
| 41 |
+
|
| 42 |
+
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
|
| 43 |
+
dtype = (
|
| 44 |
+
None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
| 45 |
+
)
|
| 46 |
+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
|
| 47 |
+
|
| 48 |
+
# 4bit pre quantized models we support for 4x faster downloading + no OOMs.
|
| 49 |
+
fourbit_models = [
|
| 50 |
+
"unsloth/mistral-7b-v0.3-bnb-4bit", # New Mistral v3 2x faster!
|
| 51 |
+
"unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
|
| 52 |
+
"unsloth/llama-3-8b-bnb-4bit", # Llama-3 15 trillion tokens model 2x faster!
|
| 53 |
+
"unsloth/llama-3-8b-Instruct-bnb-4bit",
|
| 54 |
+
"unsloth/llama-3-70b-bnb-4bit",
|
| 55 |
+
"unsloth/Phi-3-mini-4k-instruct", # Phi-3 2x faster!
|
| 56 |
+
"unsloth/Phi-3-medium-4k-instruct",
|
| 57 |
+
"unsloth/mistral-7b-bnb-4bit",
|
| 58 |
+
"unsloth/gemma-7b-bnb-4bit", # Gemma 2.2x faster!
|
| 59 |
+
] # More models at https://huggingface.co/unsloth
|
| 60 |
+
|
| 61 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 62 |
+
# model_name = "unsloth/llama-3-8b-bnb-4bit",
|
| 63 |
+
model_name="QuangHoDev/lora_model",
|
| 64 |
+
max_seq_length=max_seq_length,
|
| 65 |
+
dtype=dtype,
|
| 66 |
+
load_in_4bit=load_in_4bit,
|
| 67 |
+
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
model = FastLanguageModel.get_peft_model(
|
| 71 |
+
model,
|
| 72 |
+
r=16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
|
| 73 |
+
target_modules=[
|
| 74 |
+
"q_proj",
|
| 75 |
+
"k_proj",
|
| 76 |
+
"v_proj",
|
| 77 |
+
"o_proj",
|
| 78 |
+
"gate_proj",
|
| 79 |
+
"up_proj",
|
| 80 |
+
"down_proj",
|
| 81 |
+
],
|
| 82 |
+
lora_alpha=16,
|
| 83 |
+
lora_dropout=0, # Supports any, but = 0 is optimized
|
| 84 |
+
bias="none", # Supports any, but = "none" is optimized
|
| 85 |
+
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
|
| 86 |
+
use_gradient_checkpointing="unsloth", # True or "unsloth" for very long context
|
| 87 |
+
random_state=3407,
|
| 88 |
+
use_rslora=False, # We support rank stabilized LoRA
|
| 89 |
+
loftq_config=None, # And LoftQ
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
from datasets import load_dataset
|
| 93 |
+
|
| 94 |
+
dataset = load_dataset("QuangHoDev/house-prices-info", split="train")
|
| 95 |
+
|
| 96 |
+
from unsloth import to_sharegpt
|
| 97 |
+
|
| 98 |
+
dataset = to_sharegpt(
|
| 99 |
+
dataset,
|
| 100 |
+
merged_prompt="Tiêu đề: {title}\nMô tả: {description}\nĐịa chỉ: {location}\nDiện tích: {area}",
|
| 101 |
+
output_column_name="price",
|
| 102 |
+
conversation_extension=3, # Select more to handle longer conversations
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
from unsloth import standardize_sharegpt
|
| 106 |
+
|
| 107 |
+
dataset = standardize_sharegpt(dataset)
|
| 108 |
+
|
| 109 |
+
chat_template = """Dưới đây là thông tin về các bất động sản và giá của chúng.
|
| 110 |
+
Hãy đoán giá bất động sản theo mô tả.
|
| 111 |
+
|
| 112 |
+
>>> Mô tả bất động sản:
|
| 113 |
+
{INPUT}
|
| 114 |
+
|
| 115 |
+
>>> Giá là:
|
| 116 |
+
{OUTPUT}"""
|
| 117 |
+
|
| 118 |
+
from unsloth import apply_chat_template
|
| 119 |
+
|
| 120 |
+
dataset = apply_chat_template(
|
| 121 |
+
dataset,
|
| 122 |
+
tokenizer=tokenizer,
|
| 123 |
+
chat_template=chat_template,
|
| 124 |
+
# default_system_message = "You are a helpful assistant", << [OPTIONAL]
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
with gr.Blocks() as demo:
|
| 128 |
+
description = gr.Textbox(label="Mô tả nhà", lines=4)
|
| 129 |
+
location = gr.Textbox(label="Địa chỉ", lines=2)
|
| 130 |
+
area = gr.Number(label="Diện tích (m²)")
|
| 131 |
+
output = gr.Textbox(label="Giá nhà")
|
| 132 |
+
greet_btn = gr.Button("Đoán giá", variant="primary")
|
| 133 |
+
greet_btn.click(
|
| 134 |
+
fn=predict_house_price,
|
| 135 |
+
inputs=[description, location, area],
|
| 136 |
+
outputs=output,
|
| 137 |
+
api_name="greet",
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
gr.Examples(
|
| 141 |
+
examples=[
|
| 142 |
+
[
|
| 143 |
+
"Nhanh tay sở hữu căn nhà riêng (căn góc) 3 tầng tại Phường 10, Gò Vấp với thiết kế 3 phòng ngủ + 4toilet/PT + bếp...",
|
| 144 |
+
"261/, Đường Quang Trung, Phường 10, Quận Gò Vấp",
|
| 145 |
+
40,
|
| 146 |
+
],
|
| 147 |
+
],
|
| 148 |
+
inputs=[description, location, area],
|
| 149 |
+
label="Ví dụ mẫu",
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
demo.launch()
|