Spaces:
Sleeping
Sleeping
| # -*- coding: utf-8 -*- | |
| """Sentiment Analysis App.ipynb | |
| Automatically generated by Colaboratory. | |
| Original file is located at | |
| https://colab.research.google.com/drive/1t6wAnMPDdEHuioRZofR8_JEPrzuT7KAJ | |
| """ | |
| # Import the required Libraries | |
| import gradio as gr | |
| import numpy as np | |
| import transformers | |
| from transformers import AutoTokenizer, AutoConfig, AutoModelForSequenceClassification, TFAutoModelForSequenceClassification | |
| from scipy.special import softmax | |
| # Requirements | |
| model_path = "Queensly/finetuned_albert_base_v2" | |
| tokenizer = AutoTokenizer.from_pretrained(model_path) | |
| config = AutoConfig.from_pretrained(model_path) | |
| model = AutoModelForSequenceClassification.from_pretrained(model_path) | |
| # Preprocess text (username and link placeholders) | |
| def preprocess(text): | |
| new_text = [] | |
| for t in text.split(" "): | |
| t = "@user" if t.startswith("@") and len(t) > 1 else t | |
| t = "http" if t.startswith("http") else t | |
| new_text.append(t) | |
| return " ".join(new_text) | |
| #Function to process the input and return prediction | |
| def sentiment_analysis(text): | |
| text = preprocess(text) | |
| encoded_input = tokenizer(text, return_tensors = "pt") # for PyTorch-based models | |
| output = model(**encoded_input) | |
| scores_ = output[0][0].detach().numpy() | |
| scores_ = softmax(scores_) | |
| #Output of scores by converting a list of labels and scores into a dictionary format | |
| labels = ["Negative", "Neutral", "Positive"] | |
| scores = {l:float(s) for (l,s) in zip(labels, scores_) } | |
| return scores | |
| #App interface with gradio | |
| app = gr.Interface(fn = sentiment_analysis, | |
| inputs = gr.Textbox("Write your text or tweet here..."), | |
| outputs = "label", | |
| title = "Sentiment Analysis of Tweets on COVID-19 Vaccines", | |
| description = "This app analyzes sentiment of text based on tweets about COVID-19 Vaccines using a fine-tuned albert_base_v2 model", | |
| interpretation = "default", | |
| examples=[["covid vaccines are great!"]] | |
| ) | |
| app.launch() |