from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool import datetime import requests import pytz import yaml from tools.final_answer import FinalAnswerTool from transformers import pipeline # For local NLP analysis from Gradio_UI import GradioUI # Below is an example of a tool that does nothing. Amaze us with your creativity ! # Tools and model already present in the environment search_tool = DuckDuckGoSearchTool() # Set up a local NLP pipeline with Hugging Face for text analysis sentiment_analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english") topic_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") @tool def my_custom_tool(x_username: str, days_in_past:int)-> str: #it's import to specify the return type #Keep this format for the description / args / args description but feel free to modify the tool """A tool that creates a fictional psychological portrait based on an X user's recent activity using Hugging Face tools. Args: x_username: The X username to analyze (e.g., 'elonmusk') days_in_past: Number of days in the past to analyze (max 30) """ # Check if the number of days is within acceptable range if days_in_past < 1 or days_in_past > 30: return "Please choose a number of days between 1 and 30." # Calculate the time range current_date = datetime.datetime.now() start_date = current_date - datetime.timedelta(days=days_in_past) date_range = f"from {start_date.strftime('%Y-%m-%d')} to {current_date.strftime('%Y-%m-%d')}" # Analyze available data using adapted tools posts_data = analyze_x_activity_with_hf(x_username, days_in_past) if not posts_data or not posts_data.get("content"): return f"No recent activity data found for @{x_username} in the last {days_in_past} days." # Generate the psychological portrait portrait = craft_psychological_portrait(x_username, posts_data, date_range) return portrait def analyze_x_activity_with_hf(username: str, days: int) -> dict: """Use Hugging Face-compatible tools to analyze X activity.""" # Search via DuckDuckGo to simulate posts (no direct X access) query = f"site:x.com {username} -inurl:(signup | login)" try: search_results = search_tool(query) content = " ".join([result["snippet"] for result in search_results[:5] if result.get("snippet")]) except Exception: content = f"Recent activity by {username}" # Fallback if search fails # Return empty dict if no content is found if not content: return {} # Analyze tone with DistilBERT sentiment = sentiment_analyzer(content[:512])[0] # Limit to 512 tokens tone = "positive" if sentiment["label"] == "POSITIVE" else "negative" if sentiment["label"] == "NEGATIVE" else "neutral" # Extract themes with zero-shot classification candidate_labels = ["tech", "politics", "humor", "science", "personal", "nature","philosophy"] theme_result = topic_classifier(content[:512], candidate_labels, multi_label=False) top_themes = [label for label, score in zip(theme_result["labels"], theme_result["scores"]) if score > 0.5][:2] if not top_themes: top_themes = [theme_result["labels"][0]] # Take the most probable if nothing above 0.5 # Count words word_count = len(content.split()) return { "content": content, "tone": tone, "themes": top_themes, "word_count": word_count } def craft_psychological_portrait(username: str, posts_data: dict, date_range: str) -> str: """Helper function to craft a fictional psychological portrait.""" tone = posts_data["tone"] themes = " and ".join(posts_data["themes"]) word_count = posts_data["word_count"] # Generate a creative description based on tone if tone == "positive": intro = f"@{username}, over {date_range}, emerges as a radiant soul, gazing at the world with unyielding hope." trait = f"Your words weave {themes} into a tapestry of possibility, each of your {word_count} words a spark of light." elif tone == "negative": intro = f"@{username}, across {date_range}, walks a quiet path, shadowed by gentle sorrow." trait = f"In {themes}, your {word_count} words murmur like rain, painting a world both tender and lost." else: # neutral or other intro = f"@{username}, within {date_range}, stands as an explorer of the unknown, eyes wide with wonder." trait = f"Your {word_count} words chase {themes}, each a question unfurling toward the infinite." return f"{intro} {trait}" @tool def get_current_time_in_timezone(timezone: str) -> str: """A tool that fetches the current local time in a specified timezone. Args: timezone: A string representing a valid timezone (e.g., 'America/New_York'). """ try: # Create timezone object tz = pytz.timezone(timezone) # Get current time in that timezone local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") return f"The current local time in {timezone} is: {local_time}" except Exception as e: return f"Error fetching time for timezone '{timezone}': {str(e)}" final_answer = FinalAnswerTool() # If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder: # model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' model = HfApiModel( max_tokens=2096, temperature=0.5, model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded custom_role_conversions=None, ) # Import tool from Hub image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) with open("prompts.yaml", 'r') as stream: prompt_templates = yaml.safe_load(stream) agent = CodeAgent( model=model, tools=[final_answer,my_custom_tool, search_tool], # Add compatible HF tools max_steps=6, verbosity_level=1, grammar=None, planning_interval=None, name=None, description=None, prompt_templates=prompt_templates ) GradioUI(agent).launch()