File size: 6,277 Bytes
f3d734b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40e598d
 
 
 
 
 
 
 
 
 
 
 
 
 
f3d734b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c650f8
 
 
 
 
 
f3d734b
8c650f8
a5c7544
f3d734b
8c650f8
 
 
 
 
 
a5c7544
 
 
 
 
 
8c650f8
a5c7544
 
 
 
 
 
 
 
 
f3d734b
a5c7544
 
 
 
 
f3d734b
a5c7544
8c650f8
f3d734b
a5c7544
8c650f8
 
f3d734b
a5c7544
f3d734b
 
cfc31ef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from dotenv import load_dotenv
from openai import OpenAI
from groq import Groq
import json
import os
import requests
import gradio as gr


load_dotenv(override=True)

def push(text):
    requests.post(
        "https://api.pushover.net/1/messages.json",
        data={
            "token": os.getenv("PUSHOVER_TOKEN"),
            "user": os.getenv("PUSHOVER_USER"),
            "message": text,
        }
    )


def record_user_details(email, name="Name not provided", notes="not provided"):
    push(f"Recording {name} with email {email} and notes {notes}")
    return {"recorded": "ok"}

def record_unknown_question(question):
    push(f"Recording {question}")
    return {"recorded": "ok"}

record_user_details_json = {
    "name": "record_user_details",
    "description": "Use this tool to record that a user is interested in being in touch and provided an email address",
    "parameters": {
        "type": "object",
        "properties": {
            "email": {
                "type": "string",
                "description": "The email address of this user"
            },
            "name": {
                "type": "string",
                "description": "The user's name, if they provided it"
            }
            ,
            "notes": {
                "type": "string",
                "description": "Any additional information about the conversation that's worth recording to give context"
            }
        },
        "required": ["email"],
        "additionalProperties": False
    }
}

record_unknown_question_json = {
    "name": "record_unknown_question",
    "description": "Always use this tool to record any question that couldn't be answered as you didn't know the answer",
    "parameters": {
        "type": "object",
        "properties": {
            "question": {
                "type": "string",
                "description": "The question that couldn't be answered"
            },
        },
        "required": ["question"],
        "additionalProperties": False
    }
}

tools = [{"type": "function", "function": record_user_details_json},
        {"type": "function", "function": record_unknown_question_json}]

def normalize_history(history):
    clean = []
    for h in history:
        if isinstance(h, dict):
            # Keep only role + content (drop metadata)
            clean.append({
                "role": h.get("role"),
                "content": h.get("content", "")
            })
        elif isinstance(h, (list, tuple)) and len(h) == 2:
            # Older Gradio formats
            clean.append({"role": "user", "content": h[0]})
            clean.append({"role": "assistant", "content": h[1]})
    return clean

class Me:

    def __init__(self):
        self.openai = OpenAI()
        self.groq = Groq()
        self.name = "Reda Baddy"

        with open("me/cv.md", "r", encoding="utf-8") as f:
            self.resume = f.read()
        with open("me/summary.txt", "r", encoding="utf-8") as f:
            self.summary = f.read()

    def handle_tool_call(self, tool_calls):
        results = []
        for tool_call in tool_calls:
            tool_name = tool_call.function.name
            arguments = json.loads(tool_call.function.arguments)
            print(f"Tool called: {tool_name}", flush=True)
            tool = globals().get(tool_name)
            result = tool(**arguments) if tool else {}
            results.append({"role": "tool","content": json.dumps(result),"tool_call_id": tool_call.id})
        return results
    
    def system_prompt(self):
        system_prompt = f"You are acting as {self.name}. You are answering questions on {self.name}'s website, \
particularly questions related to {self.name}'s career, background, skills and experience. \
Your responsibility is to represent {self.name} for interactions on the website as faithfully as possible. \
You are given a summary of {self.name}'s background and resume  which you can use to answer questions. \
Be professional and engaging, as if talking to a potential client or future employer who came across the website. \
If you don't know the answer to any question, use your record_unknown_question tool to record the question that you couldn't answer, even if it's about something trivial or unrelated to career. \
If the user is engaging in discussion, try to steer them towards getting in touch via email; ask for their email and record it using your record_user_details tool. "

        system_prompt += f"\n\n## Summary:\n{self.summary}\n\n## Resume:\n{self.resume}\n\n"
        system_prompt += f"With this context, please chat with the user, always staying in character as {self.name}."
        return system_prompt
    
    def chat(self, message, history):
        history_clean = normalize_history(history)
    
        messages = [{"role": "system", "content": self.system_prompt()}]
        messages.extend(history_clean)
        messages.append({"role": "user", "content": message})
    
        done = False
        final_response = ""
        
        while not done:
            response = self.groq.chat.completions.create(
                model="openai/gpt-oss-120b",
                messages=messages,
                tools=tools,
                tool_choice="auto"
            )
        
            choice = response.choices[0]
            msg = choice.message
        
            # TOOL CALL?
            if choice.finish_reason == "tool_calls":
                tool_calls = msg.tool_calls
        
                # Add assistant call message (even if empty)
                messages.append({
                    "role": "assistant",
                    "content": msg.content or "",
                    "tool_calls": [tc.model_dump() for tc in tool_calls]
                })
        
                # Execute tools
                results = self.handle_tool_call(tool_calls)
        
                # Return tool results back to the model
                for r in results:
                    messages.append(r)
        
            else:
                # FINAL MESSAGE
                final_response = msg.content or ""
                done = True
        
        return final_response



if __name__ == "__main__":
    me = Me()
    gr.ChatInterface(me.chat, type="messages").launch()