Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import torch
|
|
|
|
| 2 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 3 |
torch.backends.cudnn.allow_tf32 = True
|
| 4 |
import gradio as gr
|
|
@@ -25,12 +26,17 @@ pipe = FluxWithCFGPipeline.from_pretrained(
|
|
| 25 |
)
|
| 26 |
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
|
| 27 |
pipe.to("cuda")
|
| 28 |
-
pipe.load_lora_weights(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
pipe.set_adapters(["better"], adapter_weights=[1.0])
|
| 30 |
pipe.fuse_lora(adapter_name=["better"], lora_scale=1.0)
|
| 31 |
pipe.unload_lora_weights()
|
| 32 |
|
| 33 |
-
|
|
|
|
| 34 |
pipe.vae.to(memory_format=torch.channels_last)
|
| 35 |
|
| 36 |
pipe.enable_xformers_memory_efficient_attention()
|
|
@@ -39,7 +45,15 @@ torch.cuda.empty_cache()
|
|
| 39 |
|
| 40 |
# Inference function
|
| 41 |
@spaces.GPU(duration=25)
|
| 42 |
-
def generate_image(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
if randomize_seed:
|
| 44 |
seed = random.randint(0, MAX_SEED)
|
| 45 |
generator = torch.Generator().manual_seed(int(float(seed)))
|
|
@@ -47,9 +61,15 @@ def generate_image(prompt, seed=24, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT,
|
|
| 47 |
start_time = time.time()
|
| 48 |
|
| 49 |
# Initialize static inputs for CUDA graph
|
| 50 |
-
static_latents = torch.randn(
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
static_text_ids = torch.tensor([[[1, 2, 3]]], dtype=torch.int32, device="cuda")
|
| 54 |
static_latent_image_ids = torch.tensor([1], dtype=torch.int64, device="cuda")
|
| 55 |
static_timestep = torch.tensor([999], dtype=dtype, device="cuda")
|
|
@@ -86,11 +106,22 @@ def generate_image(prompt, seed=24, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT,
|
|
| 86 |
joint_attention_kwargs=pipe.joint_attention_kwargs,
|
| 87 |
return_dict=False,
|
| 88 |
)[0]
|
| 89 |
-
static_latents_out = pipe.scheduler.step(
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
# Graph-based generation function
|
| 93 |
-
def generate_with_graph(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
static_latents.copy_(latents)
|
| 95 |
static_prompt_embeds.copy_(prompt_embeds)
|
| 96 |
static_pooled_prompt_embeds.copy_(pooled_prompt_embeds)
|
|
@@ -101,15 +132,15 @@ def generate_image(prompt, seed=24, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT,
|
|
| 101 |
return static_output
|
| 102 |
|
| 103 |
# Only generate the last image in the sequence
|
| 104 |
-
img = pipe.generate_images(
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
latency = f"Latency: {(time.time()-start_time):.2f} seconds"
|
| 113 |
return img, seed, latency
|
| 114 |
|
| 115 |
# Example prompts
|
|
@@ -127,12 +158,18 @@ examples = [
|
|
| 127 |
with gr.Blocks() as demo:
|
| 128 |
with gr.Column(elem_id="app-container"):
|
| 129 |
gr.Markdown("# 🎨 Realtime FLUX Image Generator")
|
| 130 |
-
gr.Markdown(
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
with gr.Row():
|
| 134 |
with gr.Column(scale=2.5):
|
| 135 |
-
result = gr.Image(
|
|
|
|
|
|
|
| 136 |
with gr.Column(scale=1):
|
| 137 |
prompt = gr.Text(
|
| 138 |
label="Prompt",
|
|
@@ -146,15 +183,39 @@ with gr.Blocks() as demo:
|
|
| 146 |
|
| 147 |
with gr.Column("Advanced Options"):
|
| 148 |
with gr.Row():
|
| 149 |
-
realtime = gr.Checkbox(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
latency = gr.Text(label="Latency")
|
| 151 |
with gr.Row():
|
| 152 |
seed = gr.Number(label="Seed", value=42)
|
| 153 |
-
randomize_seed = gr.Checkbox(
|
|
|
|
|
|
|
| 154 |
with gr.Row():
|
| 155 |
-
width = gr.Slider(
|
| 156 |
-
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
with gr.Row():
|
| 160 |
gr.Markdown("### 🌟 Inspiration Gallery")
|
|
@@ -164,7 +225,7 @@ with gr.Blocks() as demo:
|
|
| 164 |
fn=generate_image,
|
| 165 |
inputs=[prompt],
|
| 166 |
outputs=[result, seed, latency],
|
| 167 |
-
cache_examples="lazy"
|
| 168 |
)
|
| 169 |
|
| 170 |
enhanceBtn.click(
|
|
@@ -173,7 +234,7 @@ with gr.Blocks() as demo:
|
|
| 173 |
outputs=[result, seed, latency],
|
| 174 |
show_progress="full",
|
| 175 |
queue=False,
|
| 176 |
-
concurrency_limit=None
|
| 177 |
)
|
| 178 |
|
| 179 |
generateBtn.click(
|
|
@@ -182,13 +243,13 @@ with gr.Blocks() as demo:
|
|
| 182 |
outputs=[result, seed, latency],
|
| 183 |
show_progress="full",
|
| 184 |
api_name="RealtimeFlux",
|
| 185 |
-
queue=False
|
| 186 |
)
|
| 187 |
|
| 188 |
def update_ui(realtime_enabled):
|
| 189 |
return {
|
| 190 |
prompt: gr.update(interactive=True),
|
| 191 |
-
generateBtn: gr.update(visible=not realtime_enabled)
|
| 192 |
}
|
| 193 |
|
| 194 |
realtime.change(
|
|
@@ -196,7 +257,7 @@ with gr.Blocks() as demo:
|
|
| 196 |
inputs=[realtime],
|
| 197 |
outputs=[prompt, generateBtn],
|
| 198 |
queue=False,
|
| 199 |
-
concurrency_limit=None
|
| 200 |
)
|
| 201 |
|
| 202 |
async def realtime_generation(*args):
|
|
@@ -211,18 +272,26 @@ with gr.Blocks() as demo:
|
|
| 211 |
outputs=[result, seed, latency],
|
| 212 |
show_progress="full",
|
| 213 |
queue=False,
|
| 214 |
-
concurrency_limit=None
|
| 215 |
)
|
| 216 |
|
| 217 |
for component in [prompt, width, height, num_inference_steps]:
|
| 218 |
component.input(
|
| 219 |
fn=realtime_generation,
|
| 220 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
outputs=[result, seed, latency],
|
| 222 |
show_progress="hidden",
|
| 223 |
trigger_mode="always_last",
|
| 224 |
queue=True,
|
| 225 |
-
concurrency_limit=None
|
| 226 |
)
|
| 227 |
|
| 228 |
# Launch the app
|
|
|
|
| 1 |
import torch
|
| 2 |
+
|
| 3 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 4 |
torch.backends.cudnn.allow_tf32 = True
|
| 5 |
import gradio as gr
|
|
|
|
| 26 |
)
|
| 27 |
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
|
| 28 |
pipe.to("cuda")
|
| 29 |
+
pipe.load_lora_weights(
|
| 30 |
+
"hugovntr/flux-schnell-realism",
|
| 31 |
+
weight_name="schnell-realism_v2.3.safetensors",
|
| 32 |
+
adapter_name="better",
|
| 33 |
+
)
|
| 34 |
pipe.set_adapters(["better"], adapter_weights=[1.0])
|
| 35 |
pipe.fuse_lora(adapter_name=["better"], lora_scale=1.0)
|
| 36 |
pipe.unload_lora_weights()
|
| 37 |
|
| 38 |
+
# Corrected: Access 'transformer' instead of 'unet'
|
| 39 |
+
pipe.transformer.to(memory_format=torch.channels_last)
|
| 40 |
pipe.vae.to(memory_format=torch.channels_last)
|
| 41 |
|
| 42 |
pipe.enable_xformers_memory_efficient_attention()
|
|
|
|
| 45 |
|
| 46 |
# Inference function
|
| 47 |
@spaces.GPU(duration=25)
|
| 48 |
+
def generate_image(
|
| 49 |
+
prompt,
|
| 50 |
+
seed=24,
|
| 51 |
+
width=DEFAULT_WIDTH,
|
| 52 |
+
height=DEFAULT_HEIGHT,
|
| 53 |
+
randomize_seed=False,
|
| 54 |
+
num_inference_steps=2,
|
| 55 |
+
progress=gr.Progress(track_tqdm=True),
|
| 56 |
+
):
|
| 57 |
if randomize_seed:
|
| 58 |
seed = random.randint(0, MAX_SEED)
|
| 59 |
generator = torch.Generator().manual_seed(int(float(seed)))
|
|
|
|
| 61 |
start_time = time.time()
|
| 62 |
|
| 63 |
# Initialize static inputs for CUDA graph
|
| 64 |
+
static_latents = torch.randn(
|
| 65 |
+
(1, 4, height // 8, width // 8), dtype=dtype, device="cuda"
|
| 66 |
+
)
|
| 67 |
+
static_prompt_embeds = torch.randn(
|
| 68 |
+
(2, 77, 768), dtype=dtype, device="cuda"
|
| 69 |
+
) # Adjust dimensions as needed
|
| 70 |
+
static_pooled_prompt_embeds = torch.randn(
|
| 71 |
+
(2, 768), dtype=dtype, device="cuda"
|
| 72 |
+
) # Adjust dimensions as needed
|
| 73 |
static_text_ids = torch.tensor([[[1, 2, 3]]], dtype=torch.int32, device="cuda")
|
| 74 |
static_latent_image_ids = torch.tensor([1], dtype=torch.int64, device="cuda")
|
| 75 |
static_timestep = torch.tensor([999], dtype=dtype, device="cuda")
|
|
|
|
| 106 |
joint_attention_kwargs=pipe.joint_attention_kwargs,
|
| 107 |
return_dict=False,
|
| 108 |
)[0]
|
| 109 |
+
static_latents_out = pipe.scheduler.step(
|
| 110 |
+
static_noise_pred, static_timestep, static_latents, return_dict=False
|
| 111 |
+
)[0]
|
| 112 |
+
static_output = pipe._decode_latents_to_image(
|
| 113 |
+
static_latents_out, height, width, "pil"
|
| 114 |
+
)
|
| 115 |
|
| 116 |
# Graph-based generation function
|
| 117 |
+
def generate_with_graph(
|
| 118 |
+
latents,
|
| 119 |
+
prompt_embeds,
|
| 120 |
+
pooled_prompt_embeds,
|
| 121 |
+
text_ids,
|
| 122 |
+
latent_image_ids,
|
| 123 |
+
timestep,
|
| 124 |
+
):
|
| 125 |
static_latents.copy_(latents)
|
| 126 |
static_prompt_embeds.copy_(prompt_embeds)
|
| 127 |
static_pooled_prompt_embeds.copy_(pooled_prompt_embeds)
|
|
|
|
| 132 |
return static_output
|
| 133 |
|
| 134 |
# Only generate the last image in the sequence
|
| 135 |
+
img = pipe.generate_images(
|
| 136 |
+
prompt=prompt,
|
| 137 |
+
width=width,
|
| 138 |
+
height=height,
|
| 139 |
+
num_inference_steps=num_inference_steps,
|
| 140 |
+
generator=generator,
|
| 141 |
+
generate_with_graph=generate_with_graph,
|
| 142 |
+
)
|
| 143 |
+
latency = f"Latency: {(time.time()-start_time):.2f} seconds"
|
| 144 |
return img, seed, latency
|
| 145 |
|
| 146 |
# Example prompts
|
|
|
|
| 158 |
with gr.Blocks() as demo:
|
| 159 |
with gr.Column(elem_id="app-container"):
|
| 160 |
gr.Markdown("# 🎨 Realtime FLUX Image Generator")
|
| 161 |
+
gr.Markdown(
|
| 162 |
+
"Generate stunning images in real-time with Modified Flux.Schnell pipeline."
|
| 163 |
+
)
|
| 164 |
+
gr.Markdown(
|
| 165 |
+
"<span style='color: red;'>Note: Sometimes it stucks or stops generating images (I don't know why). In that situation just refresh the site.</span>"
|
| 166 |
+
)
|
| 167 |
|
| 168 |
with gr.Row():
|
| 169 |
with gr.Column(scale=2.5):
|
| 170 |
+
result = gr.Image(
|
| 171 |
+
label="Generated Image", show_label=False, interactive=False
|
| 172 |
+
)
|
| 173 |
with gr.Column(scale=1):
|
| 174 |
prompt = gr.Text(
|
| 175 |
label="Prompt",
|
|
|
|
| 183 |
|
| 184 |
with gr.Column("Advanced Options"):
|
| 185 |
with gr.Row():
|
| 186 |
+
realtime = gr.Checkbox(
|
| 187 |
+
label="Realtime Toggler",
|
| 188 |
+
info="If TRUE then uses more GPU but create image in realtime.",
|
| 189 |
+
value=False,
|
| 190 |
+
)
|
| 191 |
latency = gr.Text(label="Latency")
|
| 192 |
with gr.Row():
|
| 193 |
seed = gr.Number(label="Seed", value=42)
|
| 194 |
+
randomize_seed = gr.Checkbox(
|
| 195 |
+
label="Randomize Seed", value=True
|
| 196 |
+
)
|
| 197 |
with gr.Row():
|
| 198 |
+
width = gr.Slider(
|
| 199 |
+
label="Width",
|
| 200 |
+
minimum=256,
|
| 201 |
+
maximum=MAX_IMAGE_SIZE,
|
| 202 |
+
step=32,
|
| 203 |
+
value=DEFAULT_WIDTH,
|
| 204 |
+
)
|
| 205 |
+
height = gr.Slider(
|
| 206 |
+
label="Height",
|
| 207 |
+
minimum=256,
|
| 208 |
+
maximum=MAX_IMAGE_SIZE,
|
| 209 |
+
step=32,
|
| 210 |
+
value=DEFAULT_HEIGHT,
|
| 211 |
+
)
|
| 212 |
+
num_inference_steps = gr.Slider(
|
| 213 |
+
label="Inference Steps",
|
| 214 |
+
minimum=1,
|
| 215 |
+
maximum=4,
|
| 216 |
+
step=1,
|
| 217 |
+
value=DEFAULT_INFERENCE_STEPS,
|
| 218 |
+
)
|
| 219 |
|
| 220 |
with gr.Row():
|
| 221 |
gr.Markdown("### 🌟 Inspiration Gallery")
|
|
|
|
| 225 |
fn=generate_image,
|
| 226 |
inputs=[prompt],
|
| 227 |
outputs=[result, seed, latency],
|
| 228 |
+
cache_examples="lazy",
|
| 229 |
)
|
| 230 |
|
| 231 |
enhanceBtn.click(
|
|
|
|
| 234 |
outputs=[result, seed, latency],
|
| 235 |
show_progress="full",
|
| 236 |
queue=False,
|
| 237 |
+
concurrency_limit=None,
|
| 238 |
)
|
| 239 |
|
| 240 |
generateBtn.click(
|
|
|
|
| 243 |
outputs=[result, seed, latency],
|
| 244 |
show_progress="full",
|
| 245 |
api_name="RealtimeFlux",
|
| 246 |
+
queue=False,
|
| 247 |
)
|
| 248 |
|
| 249 |
def update_ui(realtime_enabled):
|
| 250 |
return {
|
| 251 |
prompt: gr.update(interactive=True),
|
| 252 |
+
generateBtn: gr.update(visible=not realtime_enabled),
|
| 253 |
}
|
| 254 |
|
| 255 |
realtime.change(
|
|
|
|
| 257 |
inputs=[realtime],
|
| 258 |
outputs=[prompt, generateBtn],
|
| 259 |
queue=False,
|
| 260 |
+
concurrency_limit=None,
|
| 261 |
)
|
| 262 |
|
| 263 |
async def realtime_generation(*args):
|
|
|
|
| 272 |
outputs=[result, seed, latency],
|
| 273 |
show_progress="full",
|
| 274 |
queue=False,
|
| 275 |
+
concurrency_limit=None,
|
| 276 |
)
|
| 277 |
|
| 278 |
for component in [prompt, width, height, num_inference_steps]:
|
| 279 |
component.input(
|
| 280 |
fn=realtime_generation,
|
| 281 |
+
inputs=[
|
| 282 |
+
realtime,
|
| 283 |
+
prompt,
|
| 284 |
+
seed,
|
| 285 |
+
width,
|
| 286 |
+
height,
|
| 287 |
+
randomize_seed,
|
| 288 |
+
num_inference_steps,
|
| 289 |
+
],
|
| 290 |
outputs=[result, seed, latency],
|
| 291 |
show_progress="hidden",
|
| 292 |
trigger_mode="always_last",
|
| 293 |
queue=True,
|
| 294 |
+
concurrency_limit=None,
|
| 295 |
)
|
| 296 |
|
| 297 |
# Launch the app
|