Sairii's picture
Uploading Trashify box detection model app.py
6f3aa0a verified
# 1. Import dependencies
import gradio as gr
import torch
# import spaces # for GPU usage
from PIL import Image, ImageDraw, ImageFont
from transformers import AutoImageProcessor, AutoModelForObjectDetection
# 2. Setup preprocessing and model functions
model_save_path = "Sairii/rt_detrv2_finetuned_trashify_box_detector_v1"
image_processor = AutoImageProcessor.from_pretrained(model_save_path)
image_processor.size = {"height":640,
"width":640}
model = AutoModelForObjectDetection.from_pretrained(model_save_path)
# Setup the target device (use GPU if it's accesible)
# Note if you want to use a GPU in your Space, you can use a ZeroGPU: https://huggingface.co/docs/hub/spaces-zerogpu
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
# Get the id2label dictionary from the model
id2label = model.config.id2label
# Setup a color dictionary
color_dict = {
"bin": "green",
"trash": "blue",
"hand": "purple",
"trash_arm": "yellow",
"not_trash": "red",
"not_bin": "red",
"not_hand": "red"
}
# 3. Create a function to predict on image
def predict_on_image(image, conf_threshold):
model.eval()
# Make a prediction on target image
with torch.no_grad():
inputs = image_processor(images = [image], return_tensors = "pt")
model_outputs = model(**inputs.to(device))
# Get original size of image
# PIL.Image.size = width, height
# But post_process_object_detection requires height, width
target_sizes = torch.tensor([[image.size[1], image.size[0]]]) # -> [batch_size, height, width]
# Post process the raw outputs from the model
results = image_processor.post_process_object_detection(
model_outputs = model_outputs,
threshold = conf_threshold,
target_sizes = target_sizes
)[0]
# Return all data items/objects to the CPU if they aren't already there
for key, value in results.items():
try:
results[key] = value.item().cpu() # can't get scalars as .items() so add try/except block
except:
results[key] = value.cpu()
### 4. Draw the predictions on the target iamge ###
draw = ImageDraw.Draw(image)
# Get a font to write on our image
font = ImageFont.load_default()
# Get a list of the detect class names
detected_class_names_text_labels = []
# Iterate throught the predictions of the model and draw them on the target image
for box, score, label in zip(results["boxes"], results["scores"], results["labels"]):
# Create coordinates
x, y, x2, y2 = tuple(box.tolist())
# Get label_name
label_name = id2label[label.item()]
targ_color = color_dict[label_name]
detected_class_names_text_labels.append(label_name)
# Draw the rectangle
draw.rectangle(xy=(x, y, x2, y2),
outline=targ_color,
width=3)
# Create a text string to display
text_string_to_show = f"{label_name} ({round(score.item(), 3)})"
# Draw the text on the image
draw.text(xy=(x, y),
text=text_string_to_show,
fill="white",
font=font)
# Remove the draw each time
del draw
### 5. Create logic for outputting information message
# Set up set of target items to discover
target_items = {"bin", "trash", "hand"}
detected_items = set(detected_class_names_text_labels)
# If no items detected or bin, trash, hand not in detected items, return notifications
if not detected_items & target_items:
return_string = {
f"No trash, bin or hand detected at confidence threshold of {conf_threshold}"
f"Try another image or lowerin the confidence threshold"
}
print(return_string)
return image, return_string
# If there are items missing, output what's missing for +1 point
missing_items = target_items - detected_items
if missing_items:
return_string (
f" Detected the following items: {sorted(detected_class_names_text_labels)}"
f" Missing the following items: {sorted(missing_items)}"
"In order to get +1 points, all target items must be detected"
)
print(return_string)
return image, return_string
# Final case, all items are detected
return_string = f"+1: Found the following items: {sorted(detected_items)}, thank you for cleaning up your local area"
return image, return_string
### 6. Setup the demo application to take in image, make a prediction with our model, return the image with drawn predicitons ###
# Write description for our demo application
description = """
Help clean up your local area! Upload an image and get +1 if there is all of the following items detected: trash, bin, hand.
Model is a fine-tuned version of [RT-DETRv2](https://huggingface.co/docs/transformers/main/en/model_doc/rt_detr_v2#transformers.RTDetrV2Config) on the [Trashify dataset](https://huggingface.co/datasets/mrdbourke/trashify_manual_labelled_images).
See the full data loading and training code on [learnhuggingface.com](https://www.learnhuggingface.com/notebooks/hugging_face_object_detection_tutorial).
This version is v1 because the first three versions were using a different model and did not perform as well, see the [README](https://huggingface.co/spaces/mrdbourke/trashify_demo_v4/blob/main/README.md) for more.
"""
# Create the Gradio interface
demo = gr.Interface(
fn = predict_on_image,
inputs = [
gr.Image(type="pil", label="Target Input Image"),
gr.Slider(0, 1, value=0.3, label="Confidence Threshold set higher for more confident boxes")
],
outputs = [
gr.Image(type="pil", label = "Target Image Output"),
gr.Text(label="Text output")
],
description = description,
title = "Trashify Demo V1",
examples=[
["trashify_examples/trashify_example_1.jpeg", 0.3],
["trashify_examples/trashify_example_2.jpeg", 0.3],
["trashify_examples/trashify_example_3.jpeg", 0.3],
],
cache_examples = True
)
# Laun demo
demo.launch(debug=True)