Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,10 +8,7 @@ from sklearn.model_selection import KFold
|
|
| 8 |
from transformers import AutoTokenizer, DistilBertTokenizerFast
|
| 9 |
# sequence tagging model + training-related
|
| 10 |
from transformers import DistilBertForTokenClassification, Trainer, TrainingArguments
|
| 11 |
-
import numpy as np
|
| 12 |
-
import pandas as pd
|
| 13 |
import torch
|
| 14 |
-
import json
|
| 15 |
import sys
|
| 16 |
import os
|
| 17 |
from sklearn.metrics import classification_report
|
|
@@ -22,28 +19,22 @@ from sklearn.feature_extraction.text import TfidfTransformer
|
|
| 22 |
from sklearn.feature_extraction.text import CountVectorizer
|
| 23 |
from sklearn.pipeline import Pipeline, FeatureUnion
|
| 24 |
import math
|
| 25 |
-
from sklearn.metrics import accuracy_score
|
| 26 |
-
from sklearn.metrics import precision_recall_fscore_support
|
| 27 |
-
from sklearn.model_selection import train_test_split
|
| 28 |
import json
|
| 29 |
import re
|
| 30 |
import numpy as np
|
| 31 |
import pandas as pd
|
| 32 |
-
import re
|
| 33 |
import nltk
|
| 34 |
nltk.download("punkt")
|
| 35 |
import string
|
| 36 |
from sklearn.model_selection import train_test_split
|
| 37 |
from transformers import AutoTokenizer, Trainer, TrainingArguments, AutoModelForSequenceClassification, AutoConfig
|
| 38 |
-
import torch
|
| 39 |
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
|
| 40 |
import itertools
|
| 41 |
-
import json
|
| 42 |
-
import glob
|
| 43 |
from transformers import TextClassificationPipeline, TFAutoModelForSequenceClassification, AutoTokenizer
|
| 44 |
from transformers import pipeline
|
| 45 |
-
import pickle
|
| 46 |
-
import urllib.request
|
| 47 |
import csv
|
| 48 |
import pdfplumber
|
| 49 |
import pathlib
|
|
@@ -55,6 +46,7 @@ from PyPDF2 import PdfReader
|
|
| 55 |
from huggingface_hub import HfApi
|
| 56 |
import io
|
| 57 |
from datasets import load_dataset
|
|
|
|
| 58 |
|
| 59 |
import huggingface_hub
|
| 60 |
from huggingface_hub import Repository
|
|
@@ -62,8 +54,8 @@ from datetime import datetime
|
|
| 62 |
import pathlib as Path
|
| 63 |
from requests import get
|
| 64 |
import urllib.request
|
| 65 |
-
import gradio as gr
|
| 66 |
-
from gradio import inputs, outputs
|
| 67 |
from datasets import load_dataset
|
| 68 |
from huggingface_hub import HfApi, list_models
|
| 69 |
import os
|
|
@@ -130,7 +122,8 @@ def main():
|
|
| 130 |
result1 = i.lower()
|
| 131 |
result2 = re.sub(r'[^\w\s]','',result1)
|
| 132 |
result.append(result2)
|
| 133 |
-
|
|
|
|
| 134 |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") #bert-base-uncased
|
| 135 |
|
| 136 |
model_path = "checkpoint-2850"
|
|
@@ -144,6 +137,9 @@ def main():
|
|
| 144 |
if lab['label'] == 'causal': #causal
|
| 145 |
causal_sents.append(sent)
|
| 146 |
|
|
|
|
|
|
|
|
|
|
| 147 |
model_name = "distilbert-base-cased"
|
| 148 |
tokenizer = DistilBertTokenizerFast.from_pretrained(model_name)
|
| 149 |
|
|
@@ -165,7 +161,10 @@ def main():
|
|
| 165 |
sentence_pred.append(k)
|
| 166 |
class_list.append(i['word'])
|
| 167 |
entity_list.append(i['entity_group'])
|
| 168 |
-
|
|
|
|
|
|
|
|
|
|
| 169 |
# filename = 'Checkpoint-classification.sav'
|
| 170 |
# loaded_model = pickle.load(open(filename, 'rb'))
|
| 171 |
# loaded_vectorizer = pickle.load(open('vectorizefile_classification.pickle', 'rb'))
|
|
@@ -191,6 +190,9 @@ def main():
|
|
| 191 |
|
| 192 |
predictions = loaded_model.predict(pad_sequences(tokenizer.texts_to_sequences(class_list),maxlen=MAX_SEQUENCE_LENGTH))
|
| 193 |
predicted = np.argmax(predictions,axis=1)
|
|
|
|
|
|
|
|
|
|
| 194 |
pred1 = predicted
|
| 195 |
level0 = []
|
| 196 |
count =0
|
|
@@ -574,4 +576,5 @@ def main():
|
|
| 574 |
|
| 575 |
|
| 576 |
if __name__ == '__main__':
|
|
|
|
| 577 |
main()
|
|
|
|
| 8 |
from transformers import AutoTokenizer, DistilBertTokenizerFast
|
| 9 |
# sequence tagging model + training-related
|
| 10 |
from transformers import DistilBertForTokenClassification, Trainer, TrainingArguments
|
|
|
|
|
|
|
| 11 |
import torch
|
|
|
|
| 12 |
import sys
|
| 13 |
import os
|
| 14 |
from sklearn.metrics import classification_report
|
|
|
|
| 19 |
from sklearn.feature_extraction.text import CountVectorizer
|
| 20 |
from sklearn.pipeline import Pipeline, FeatureUnion
|
| 21 |
import math
|
| 22 |
+
# from sklearn.metrics import accuracy_score
|
| 23 |
+
# from sklearn.metrics import precision_recall_fscore_support
|
|
|
|
| 24 |
import json
|
| 25 |
import re
|
| 26 |
import numpy as np
|
| 27 |
import pandas as pd
|
|
|
|
| 28 |
import nltk
|
| 29 |
nltk.download("punkt")
|
| 30 |
import string
|
| 31 |
from sklearn.model_selection import train_test_split
|
| 32 |
from transformers import AutoTokenizer, Trainer, TrainingArguments, AutoModelForSequenceClassification, AutoConfig
|
|
|
|
| 33 |
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
|
| 34 |
import itertools
|
|
|
|
|
|
|
| 35 |
from transformers import TextClassificationPipeline, TFAutoModelForSequenceClassification, AutoTokenizer
|
| 36 |
from transformers import pipeline
|
| 37 |
+
import pickle
|
|
|
|
| 38 |
import csv
|
| 39 |
import pdfplumber
|
| 40 |
import pathlib
|
|
|
|
| 46 |
from huggingface_hub import HfApi
|
| 47 |
import io
|
| 48 |
from datasets import load_dataset
|
| 49 |
+
import time
|
| 50 |
|
| 51 |
import huggingface_hub
|
| 52 |
from huggingface_hub import Repository
|
|
|
|
| 54 |
import pathlib as Path
|
| 55 |
from requests import get
|
| 56 |
import urllib.request
|
| 57 |
+
# import gradio as gr
|
| 58 |
+
# from gradio import inputs, outputs
|
| 59 |
from datasets import load_dataset
|
| 60 |
from huggingface_hub import HfApi, list_models
|
| 61 |
import os
|
|
|
|
| 122 |
result1 = i.lower()
|
| 123 |
result2 = re.sub(r'[^\w\s]','',result1)
|
| 124 |
result.append(result2)
|
| 125 |
+
|
| 126 |
+
print("--- %s seconds ---" % (time.time() - start_time))
|
| 127 |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") #bert-base-uncased
|
| 128 |
|
| 129 |
model_path = "checkpoint-2850"
|
|
|
|
| 137 |
if lab['label'] == 'causal': #causal
|
| 138 |
causal_sents.append(sent)
|
| 139 |
|
| 140 |
+
st.write('causal sentence classification finished')
|
| 141 |
+
st.write("--- %s seconds ---" % (time.time() - start_time))
|
| 142 |
+
|
| 143 |
model_name = "distilbert-base-cased"
|
| 144 |
tokenizer = DistilBertTokenizerFast.from_pretrained(model_name)
|
| 145 |
|
|
|
|
| 161 |
sentence_pred.append(k)
|
| 162 |
class_list.append(i['word'])
|
| 163 |
entity_list.append(i['entity_group'])
|
| 164 |
+
|
| 165 |
+
st.write('causality extraction finished')
|
| 166 |
+
st.write("--- %s seconds ---" % (time.time() - start_time))
|
| 167 |
+
|
| 168 |
# filename = 'Checkpoint-classification.sav'
|
| 169 |
# loaded_model = pickle.load(open(filename, 'rb'))
|
| 170 |
# loaded_vectorizer = pickle.load(open('vectorizefile_classification.pickle', 'rb'))
|
|
|
|
| 190 |
|
| 191 |
predictions = loaded_model.predict(pad_sequences(tokenizer.texts_to_sequences(class_list),maxlen=MAX_SEQUENCE_LENGTH))
|
| 192 |
predicted = np.argmax(predictions,axis=1)
|
| 193 |
+
|
| 194 |
+
st.write('stakeholder taxonomy finished')
|
| 195 |
+
st.write("--- %s seconds ---" % (time.time() - start_time))
|
| 196 |
pred1 = predicted
|
| 197 |
level0 = []
|
| 198 |
count =0
|
|
|
|
| 576 |
|
| 577 |
|
| 578 |
if __name__ == '__main__':
|
| 579 |
+
start_time = time.time()
|
| 580 |
main()
|