Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -194,7 +194,7 @@ iface = gr.Interface(
|
|
| 194 |
],
|
| 195 |
outputs=gr.Image(label="Token Attribution Visualization"),
|
| 196 |
title="AI Interpretability Explorer: See How Tokens Influence Predictions",
|
| 197 |
-
description="Input a prompt and target token to visualize token contributions using Integrated Gradients on LLaMA. "
|
| 198 |
"Explore model reasoning interactively.",
|
| 199 |
# Insert a collapsible Feynman-style explanation and quick cheat-sheet actions using HTML so Gradio shows it above the app.
|
| 200 |
# We use safe escaping for the cheat text when embedding into HTML/JS.
|
|
@@ -202,7 +202,7 @@ iface = gr.Interface(
|
|
| 202 |
article="""
|
| 203 |
### How it works — Feynman-style
|
| 204 |
|
| 205 |
-
This tool explains which input tokens most influence the model's next-token prediction using Integrated Gradients.
|
| 206 |
|
| 207 |
- What it does: Interpolates from a baseline to the actual input in embedding space, accumulates gradients along the path, and attributes importance to each input token.
|
| 208 |
- Why it helps: Highlights which tokens push the model toward (green) or away from (red) the chosen target token. Useful for debugging, bias detection, and model transparency.
|
|
|
|
| 194 |
],
|
| 195 |
outputs=gr.Image(label="Token Attribution Visualization"),
|
| 196 |
title="AI Interpretability Explorer: See How Tokens Influence Predictions",
|
| 197 |
+
description="Input a prompt and target token to visualize token contributions using [Integrated Gradients](https://captum.ai/docs/extension/integrated_gradients) on LLaMA. "
|
| 198 |
"Explore model reasoning interactively.",
|
| 199 |
# Insert a collapsible Feynman-style explanation and quick cheat-sheet actions using HTML so Gradio shows it above the app.
|
| 200 |
# We use safe escaping for the cheat text when embedding into HTML/JS.
|
|
|
|
| 202 |
article="""
|
| 203 |
### How it works — Feynman-style
|
| 204 |
|
| 205 |
+
This tool explains which input tokens most influence the model's next-token prediction using Integrated Gradients https://captum.ai/docs/extension/integrated_gradients.
|
| 206 |
|
| 207 |
- What it does: Interpolates from a baseline to the actual input in embedding space, accumulates gradients along the path, and attributes importance to each input token.
|
| 208 |
- Why it helps: Highlights which tokens push the model toward (green) or away from (red) the chosen target token. Useful for debugging, bias detection, and model transparency.
|