Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -314,10 +314,106 @@ class KerasBackend(ModelBackend):
|
|
| 314 |
MODEL_REGISTRY = [
|
| 315 |
("SAM-X-1-Large", "Smilyai-labs/Sam-1x-instruct", "ckpt.weights.h5", None),
|
| 316 |
("SAM-X-1-Fast ⚡ (BETA)", "Smilyai-labs/Sam-X-1-fast", "sam1_fast.weights.h5", "sam1_fast_config.json"),
|
| 317 |
-
("SAM-X-1-Mini 🚀 (
|
| 318 |
-
("SAM-X-1-Nano ⚡⚡
|
| 319 |
]
|
| 320 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 321 |
# ==============================================================================
|
| 322 |
# Load Models
|
| 323 |
# ==============================================================================
|
|
@@ -466,9 +562,10 @@ def generate_response_stream(prompt, temperature=0.7, backend=None, max_tokens=2
|
|
| 466 |
start_time = time.time()
|
| 467 |
tokens_generated = 0
|
| 468 |
|
| 469 |
-
#
|
| 470 |
decode_buffer = []
|
| 471 |
-
decode_every = 2
|
|
|
|
| 472 |
|
| 473 |
# Generate tokens
|
| 474 |
for step in range(max_tokens):
|
|
@@ -485,6 +582,24 @@ def generate_response_stream(prompt, temperature=0.7, backend=None, max_tokens=2
|
|
| 485 |
|
| 486 |
# Get logits from selected backend
|
| 487 |
next_token_logits = backend.predict(current_input)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 488 |
|
| 489 |
if temperature > 0:
|
| 490 |
next_token_logits = next_token_logits / temperature
|
|
@@ -604,7 +719,7 @@ if __name__ == "__main__":
|
|
| 604 |
.announcement-banner {
|
| 605 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 606 |
color: white;
|
| 607 |
-
padding:
|
| 608 |
border-radius: 12px;
|
| 609 |
margin-bottom: 20px;
|
| 610 |
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
|
|
@@ -612,6 +727,7 @@ if __name__ == "__main__":
|
|
| 612 |
font-size: 16px;
|
| 613 |
font-weight: 500;
|
| 614 |
animation: slideIn 0.5s ease-out;
|
|
|
|
| 615 |
}
|
| 616 |
|
| 617 |
@keyframes slideIn {
|
|
@@ -788,8 +904,13 @@ if __name__ == "__main__":
|
|
| 788 |
# Disable send button, enable stop button
|
| 789 |
yield "", "", "⚡ Generating...", gr.update(interactive=False), gr.update(interactive=True)
|
| 790 |
|
| 791 |
-
# Switch backend based on selection
|
| 792 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 793 |
|
| 794 |
# Create single-turn history
|
| 795 |
history = [{"role": "user", "content": message}]
|
|
@@ -854,8 +975,11 @@ if __name__ == "__main__":
|
|
| 854 |
# Announcement Banner
|
| 855 |
gr.HTML("""
|
| 856 |
<div class="announcement-banner">
|
| 857 |
-
<strong>
|
| 858 |
-
|
|
|
|
|
|
|
|
|
|
| 859 |
</div>
|
| 860 |
""")
|
| 861 |
|
|
@@ -865,10 +989,10 @@ if __name__ == "__main__":
|
|
| 865 |
with gr.Accordion("⚙️ Settings", open=False):
|
| 866 |
with gr.Row():
|
| 867 |
model_selector = gr.Dropdown(
|
| 868 |
-
choices=list(available_models.keys()),
|
| 869 |
-
value=
|
| 870 |
label="Model Selection",
|
| 871 |
-
info="
|
| 872 |
)
|
| 873 |
|
| 874 |
max_tokens_slider = gr.Slider(
|
|
@@ -930,33 +1054,55 @@ if __name__ == "__main__":
|
|
| 930 |
clear_btn = gr.Button("🗑️ Clear", size="sm")
|
| 931 |
|
| 932 |
gr.Markdown("""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 933 |
### 💡 Speed Optimization Tips:
|
| 934 |
-
- **
|
| 935 |
-
- **
|
| 936 |
-
- **
|
| 937 |
-
- **
|
| 938 |
-
|
| 939 |
-
|
| 940 |
-
-
|
| 941 |
-
|
| 942 |
-
|
| 943 |
-
- ✅
|
| 944 |
-
- ✅
|
| 945 |
-
- ✅
|
| 946 |
-
- ✅
|
|
|
|
|
|
|
| 947 |
|
| 948 |
### 🎯 Expected Speed (2vCPU):
|
| 949 |
-
- **Nano**:
|
| 950 |
-
- **Mini**:
|
| 951 |
-
- **Fast**:
|
| 952 |
-
- **Large**:
|
| 953 |
-
|
| 954 |
-
###
|
| 955 |
-
- **
|
| 956 |
-
- **
|
| 957 |
-
- **
|
| 958 |
-
- **Stop Flag**: Checked FIRST in generation loop for instant response
|
| 959 |
-
- **Debug View**: New checkbox to see all special tokens in raw format
|
| 960 |
""")
|
| 961 |
|
| 962 |
# Event handlers
|
|
|
|
| 314 |
MODEL_REGISTRY = [
|
| 315 |
("SAM-X-1-Large", "Smilyai-labs/Sam-1x-instruct", "ckpt.weights.h5", None),
|
| 316 |
("SAM-X-1-Fast ⚡ (BETA)", "Smilyai-labs/Sam-X-1-fast", "sam1_fast.weights.h5", "sam1_fast_config.json"),
|
| 317 |
+
("SAM-X-1-Mini 🚀 (ADVANCED!)", "Smilyai-labs/Sam-X-1-Mini", "sam1_mini_finetuned.weights.h5", "sam1_mini_finetuned_config.json"),
|
| 318 |
+
("SAM-X-1-Nano ⚡⚡", "Smilyai-labs/Sam-X-1-Nano", "sam1_nano_finetuned.weights.h5", "sam1_nano_finetuned_config.json"),
|
| 319 |
]
|
| 320 |
|
| 321 |
+
# Model complexity scores for auto-selection (higher = more capable)
|
| 322 |
+
MODEL_COMPLEXITY = {
|
| 323 |
+
"SAM-X-1-Nano ⚡⚡": 1,
|
| 324 |
+
"SAM-X-1-Mini 🚀 (ADVANCED!)": 2,
|
| 325 |
+
"SAM-X-1-Fast ⚡ (BETA)": 3,
|
| 326 |
+
"SAM-X-1-Large": 4
|
| 327 |
+
}
|
| 328 |
+
|
| 329 |
+
def estimate_prompt_complexity(prompt):
|
| 330 |
+
"""Estimate prompt complexity to choose appropriate model."""
|
| 331 |
+
prompt_lower = prompt.lower()
|
| 332 |
+
|
| 333 |
+
# Count complexity indicators
|
| 334 |
+
complexity_score = 0
|
| 335 |
+
|
| 336 |
+
# Length-based complexity
|
| 337 |
+
word_count = len(prompt.split())
|
| 338 |
+
if word_count > 100:
|
| 339 |
+
complexity_score += 3
|
| 340 |
+
elif word_count > 50:
|
| 341 |
+
complexity_score += 2
|
| 342 |
+
elif word_count > 20:
|
| 343 |
+
complexity_score += 1
|
| 344 |
+
|
| 345 |
+
# Hard reasoning keywords (need Large/Fast)
|
| 346 |
+
hard_keywords = [
|
| 347 |
+
'analyze', 'explain', 'compare', 'evaluate', 'prove', 'derive',
|
| 348 |
+
'calculate', 'solve', 'reason', 'why', 'how does', 'complex',
|
| 349 |
+
'algorithm', 'mathematics', 'philosophy', 'theory', 'logic',
|
| 350 |
+
'detailed', 'comprehensive', 'thorough', 'in-depth'
|
| 351 |
+
]
|
| 352 |
+
for keyword in hard_keywords:
|
| 353 |
+
if keyword in prompt_lower:
|
| 354 |
+
complexity_score += 2
|
| 355 |
+
|
| 356 |
+
# Medium complexity keywords (need Mini/Fast)
|
| 357 |
+
medium_keywords = [
|
| 358 |
+
'write', 'create', 'generate', 'summarize', 'describe',
|
| 359 |
+
'list', 'what is', 'tell me', 'explain briefly'
|
| 360 |
+
]
|
| 361 |
+
for keyword in medium_keywords:
|
| 362 |
+
if keyword in prompt_lower:
|
| 363 |
+
complexity_score += 1
|
| 364 |
+
|
| 365 |
+
# Code-related (usually complex)
|
| 366 |
+
if any(word in prompt_lower for word in ['code', 'function', 'program', 'debug', 'implement']):
|
| 367 |
+
complexity_score += 2
|
| 368 |
+
|
| 369 |
+
# Multi-step or multi-part questions
|
| 370 |
+
if any(word in prompt_lower for word in ['first', 'then', 'next', 'finally', 'step']):
|
| 371 |
+
complexity_score += 1
|
| 372 |
+
|
| 373 |
+
# Questions with multiple parts
|
| 374 |
+
question_marks = prompt.count('?')
|
| 375 |
+
if question_marks > 1:
|
| 376 |
+
complexity_score += 1
|
| 377 |
+
|
| 378 |
+
return complexity_score
|
| 379 |
+
|
| 380 |
+
def select_model_auto(prompt, available_models):
|
| 381 |
+
"""Automatically select best model based on prompt complexity."""
|
| 382 |
+
complexity = estimate_prompt_complexity(prompt)
|
| 383 |
+
|
| 384 |
+
# Map complexity to model choice
|
| 385 |
+
# 0-2: Simple questions -> Nano (fastest)
|
| 386 |
+
# 3-5: Medium questions -> Mini (balanced)
|
| 387 |
+
# 6-8: Complex questions -> Fast (capable)
|
| 388 |
+
# 9+: Very complex -> Large (most capable)
|
| 389 |
+
|
| 390 |
+
if complexity <= 2:
|
| 391 |
+
preferred = "SAM-X-1-Nano ⚡⚡"
|
| 392 |
+
fallback_order = ["SAM-X-1-Mini 🚀 (ADVANCED!)", "SAM-X-1-Fast ⚡ (BETA)", "SAM-X-1-Large"]
|
| 393 |
+
elif complexity <= 5:
|
| 394 |
+
preferred = "SAM-X-1-Mini 🚀 (ADVANCED!)"
|
| 395 |
+
fallback_order = ["SAM-X-1-Nano ⚡⚡", "SAM-X-1-Fast ⚡ (BETA)", "SAM-X-1-Large"]
|
| 396 |
+
elif complexity <= 8:
|
| 397 |
+
preferred = "SAM-X-1-Fast ⚡ (BETA)"
|
| 398 |
+
fallback_order = ["SAM-X-1-Mini 🚀 (ADVANCED!)", "SAM-X-1-Large", "SAM-X-1-Nano ⚡⚡"]
|
| 399 |
+
else:
|
| 400 |
+
preferred = "SAM-X-1-Large"
|
| 401 |
+
fallback_order = ["SAM-X-1-Fast ⚡ (BETA)", "SAM-X-1-Mini 🚀 (ADVANCED!)", "SAM-X-1-Nano ⚡⚡"]
|
| 402 |
+
|
| 403 |
+
# Try preferred model first
|
| 404 |
+
if preferred in available_models:
|
| 405 |
+
print(f" 🎯 Auto-selected {preferred} (complexity: {complexity})")
|
| 406 |
+
return available_models[preferred]
|
| 407 |
+
|
| 408 |
+
# Fallback to next best available
|
| 409 |
+
for model_name in fallback_order:
|
| 410 |
+
if model_name in available_models:
|
| 411 |
+
print(f" 🎯 Auto-selected {model_name} (fallback, complexity: {complexity})")
|
| 412 |
+
return available_models[model_name]
|
| 413 |
+
|
| 414 |
+
# Last resort: return any available model
|
| 415 |
+
return list(available_models.values())[0]
|
| 416 |
+
|
| 417 |
# ==============================================================================
|
| 418 |
# Load Models
|
| 419 |
# ==============================================================================
|
|
|
|
| 562 |
start_time = time.time()
|
| 563 |
tokens_generated = 0
|
| 564 |
|
| 565 |
+
# *** DYNAMIC DECODE BATCHING: Adjust based on generation speed ***
|
| 566 |
decode_buffer = []
|
| 567 |
+
decode_every = 2 # Start conservative
|
| 568 |
+
last_speed_check = start_time
|
| 569 |
|
| 570 |
# Generate tokens
|
| 571 |
for step in range(max_tokens):
|
|
|
|
| 582 |
|
| 583 |
# Get logits from selected backend
|
| 584 |
next_token_logits = backend.predict(current_input)
|
| 585 |
+
|
| 586 |
+
# *** DYNAMIC BATCHING: Adjust decode_every based on speed ***
|
| 587 |
+
# Check speed every 10 tokens after warmup
|
| 588 |
+
if tokens_generated > 5 and tokens_generated % 10 == 0:
|
| 589 |
+
current_time = time.time()
|
| 590 |
+
elapsed_since_check = current_time - last_speed_check
|
| 591 |
+
if elapsed_since_check > 0:
|
| 592 |
+
recent_speed = 10 / elapsed_since_check
|
| 593 |
+
# Adaptive batching: faster models can batch more
|
| 594 |
+
if recent_speed > 25:
|
| 595 |
+
decode_every = 8 # Very fast (Nano)
|
| 596 |
+
elif recent_speed > 15:
|
| 597 |
+
decode_every = 5 # Fast (Mini)
|
| 598 |
+
elif recent_speed > 8:
|
| 599 |
+
decode_every = 3 # Medium (Fast)
|
| 600 |
+
else:
|
| 601 |
+
decode_every = 2 # Slow (Large)
|
| 602 |
+
last_speed_check = current_time
|
| 603 |
|
| 604 |
if temperature > 0:
|
| 605 |
next_token_logits = next_token_logits / temperature
|
|
|
|
| 719 |
.announcement-banner {
|
| 720 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 721 |
color: white;
|
| 722 |
+
padding: 20px 28px;
|
| 723 |
border-radius: 12px;
|
| 724 |
margin-bottom: 20px;
|
| 725 |
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
|
|
|
|
| 727 |
font-size: 16px;
|
| 728 |
font-weight: 500;
|
| 729 |
animation: slideIn 0.5s ease-out;
|
| 730 |
+
line-height: 1.6;
|
| 731 |
}
|
| 732 |
|
| 733 |
@keyframes slideIn {
|
|
|
|
| 904 |
# Disable send button, enable stop button
|
| 905 |
yield "", "", "⚡ Generating...", gr.update(interactive=False), gr.update(interactive=True)
|
| 906 |
|
| 907 |
+
# Switch backend based on selection (or auto-select)
|
| 908 |
+
if model_choice == "🤖 Auto (Smart Selection)":
|
| 909 |
+
backend = select_model_auto(message, available_models)
|
| 910 |
+
model_name = backend.get_name()
|
| 911 |
+
yield "", f"<div style='background: #dbeafe; padding: 12px; border-radius: 8px; margin: 8px 0; border-left: 3px solid #3b82f6;'><strong>🤖 Auto-selected:</strong> {model_name}</div>", "⚡ Generating...", gr.update(interactive=False), gr.update(interactive=True)
|
| 912 |
+
else:
|
| 913 |
+
backend = available_models[model_choice]
|
| 914 |
|
| 915 |
# Create single-turn history
|
| 916 |
history = [{"role": "user", "content": message}]
|
|
|
|
| 975 |
# Announcement Banner
|
| 976 |
gr.HTML("""
|
| 977 |
<div class="announcement-banner">
|
| 978 |
+
🎉 <strong>SAM-X-1 V2.2 IS HERE!</strong> 🚀<br>
|
| 979 |
+
✨ <strong>NEW:</strong> Auto Model Selection - Let AI pick the perfect model for your task!<br>
|
| 980 |
+
⚡ <strong>NEW:</strong> Dynamic Batching - Up to 4x faster UI updates on Nano & Mini!<br>
|
| 981 |
+
🔥 <strong>TRY IT NOW:</strong> Use "Auto" mode and watch it intelligently choose Nano for speed or Large for complexity!<br>
|
| 982 |
+
💎 <strong>Nano & Mini models are BLAZING fast</strong> - Perfect for quick questions and coding tasks!
|
| 983 |
</div>
|
| 984 |
""")
|
| 985 |
|
|
|
|
| 989 |
with gr.Accordion("⚙️ Settings", open=False):
|
| 990 |
with gr.Row():
|
| 991 |
model_selector = gr.Dropdown(
|
| 992 |
+
choices=["🤖 Auto (Smart Selection)"] + list(available_models.keys()),
|
| 993 |
+
value="🤖 Auto (Smart Selection)",
|
| 994 |
label="Model Selection",
|
| 995 |
+
info="Auto picks the best model for your prompt"
|
| 996 |
)
|
| 997 |
|
| 998 |
max_tokens_slider = gr.Slider(
|
|
|
|
| 1054 |
clear_btn = gr.Button("🗑️ Clear", size="sm")
|
| 1055 |
|
| 1056 |
gr.Markdown("""
|
| 1057 |
+
### 🎯 Try These Examples with Auto Mode:
|
| 1058 |
+
|
| 1059 |
+
**Simple (→ Nano):**
|
| 1060 |
+
- "Hi, how are you?"
|
| 1061 |
+
- "What is Python?"
|
| 1062 |
+
- "Tell me a joke"
|
| 1063 |
+
|
| 1064 |
+
**Medium (→ Mini):**
|
| 1065 |
+
- "Write a short story about a robot"
|
| 1066 |
+
- "Summarize the benefits of exercise"
|
| 1067 |
+
- "Create a simple Python function to sort a list"
|
| 1068 |
+
|
| 1069 |
+
**Complex (→ Fast):**
|
| 1070 |
+
- "Analyze the differences between procedural and object-oriented programming"
|
| 1071 |
+
- "Compare and contrast democracy and authoritarianism"
|
| 1072 |
+
- "Explain how neural networks learn with backpropagation"
|
| 1073 |
+
|
| 1074 |
+
**Very Hard (→ Large):**
|
| 1075 |
+
- "Prove why the Pythagorean theorem works using geometric reasoning"
|
| 1076 |
+
- "Derive the formula for compound interest step by step"
|
| 1077 |
+
- "Explain the philosophical implications of Gödel's incompleteness theorems"
|
| 1078 |
+
|
| 1079 |
### 💡 Speed Optimization Tips:
|
| 1080 |
+
- **Auto mode (Default)**: Balances speed and quality automatically
|
| 1081 |
+
- **Manual Nano**: 30-40 tok/s - Best for simple questions
|
| 1082 |
+
- **Manual Mini**: 20-30 tok/s - Great for most tasks
|
| 1083 |
+
- **Manual Fast**: 15-20 tok/s - Good for complex reasoning
|
| 1084 |
+
- **Manual Large**: 10-15 tok/s - Use only for hardest problems
|
| 1085 |
+
- **Temperature = 0**: Greedy decoding (fastest, deterministic)
|
| 1086 |
+
- **Lower max tokens**: Stop generation earlier
|
| 1087 |
+
|
| 1088 |
+
### ⚡ V2.2 Features:
|
| 1089 |
+
- ✅ **Smart Auto-Selection** - AI picks the right model for your prompt
|
| 1090 |
+
- ✅ **Dynamic Decode Batching** - Adjusts from 2-8 tokens based on speed
|
| 1091 |
+
- ✅ **Faster UI Updates** - Nano batches 8 tokens = 4x smoother experience
|
| 1092 |
+
- ✅ **Complexity Analysis** - Examines length, keywords, code, multi-step questions
|
| 1093 |
+
- ✅ **Instant Stop Button** - Interrupt generation with no delay
|
| 1094 |
+
- ✅ **Debug Mode** - See all special tokens in raw view
|
| 1095 |
|
| 1096 |
### 🎯 Expected Speed (2vCPU):
|
| 1097 |
+
- **Nano**: 30-40 tok/s (batch: 8) ⚡⚡
|
| 1098 |
+
- **Mini**: 20-30 tok/s (batch: 5) 🚀
|
| 1099 |
+
- **Fast**: 15-20 tok/s (batch: 3) ⚡
|
| 1100 |
+
- **Large**: 10-15 tok/s (batch: 2) 💎
|
| 1101 |
+
|
| 1102 |
+
### 🚀 What's New:
|
| 1103 |
+
- **V2.2**: Auto model selection + Dynamic batching
|
| 1104 |
+
- **V2.1**: Separate Send/Stop buttons + EOS fixes + Debug view
|
| 1105 |
+
- **V2.0**: Multi-model support + Speed optimizations
|
|
|
|
|
|
|
| 1106 |
""")
|
| 1107 |
|
| 1108 |
# Event handlers
|