Spaces:
Running
Running
Few updates
Browse files
app.py
CHANGED
|
@@ -1,9 +1,10 @@
|
|
| 1 |
import os
|
| 2 |
import base64
|
| 3 |
import gradio as gr
|
| 4 |
-
|
|
|
|
| 5 |
from mistralai.models import OCRResponse
|
| 6 |
-
from typing import Union, List, Tuple
|
| 7 |
import requests
|
| 8 |
import shutil
|
| 9 |
import time
|
|
@@ -13,6 +14,11 @@ from tenacity import retry, stop_after_attempt, wait_exponential
|
|
| 13 |
from concurrent.futures import ThreadPoolExecutor
|
| 14 |
import socket
|
| 15 |
from requests.exceptions import ConnectionError, Timeout
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# Constants
|
| 18 |
SUPPORTED_IMAGE_TYPES = [".jpg", ".png", ".jpeg"]
|
|
@@ -30,6 +36,32 @@ logging.basicConfig(
|
|
| 30 |
)
|
| 31 |
logger = logging.getLogger(__name__)
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
class OCRProcessor:
|
| 34 |
def __init__(self, api_key: str):
|
| 35 |
if not api_key or not isinstance(api_key, str):
|
|
@@ -91,10 +123,12 @@ class OCRProcessor:
|
|
| 91 |
def _encode_image(image_path: str) -> str:
|
| 92 |
try:
|
| 93 |
with open(image_path, "rb") as image_file:
|
| 94 |
-
|
|
|
|
|
|
|
| 95 |
except Exception as e:
|
| 96 |
logger.error(f"Error encoding image {image_path}: {str(e)}")
|
| 97 |
-
raise ValueError("Failed to encode image")
|
| 98 |
|
| 99 |
@staticmethod
|
| 100 |
def _pdf_to_images(pdf_path: str) -> List[Tuple[str, str]]:
|
|
@@ -110,10 +144,14 @@ class OCRProcessor:
|
|
| 110 |
range(pdf_document.page_count)
|
| 111 |
))
|
| 112 |
pdf_document.close()
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
except Exception as e:
|
| 115 |
logger.error(f"Error converting PDF to images: {str(e)}")
|
| 116 |
-
|
| 117 |
|
| 118 |
@staticmethod
|
| 119 |
def _convert_page(pdf_path: str, page_num: int) -> Tuple[str, str]:
|
|
@@ -132,128 +170,151 @@ class OCRProcessor:
|
|
| 132 |
|
| 133 |
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=2, max=10))
|
| 134 |
def _call_ocr_api(self, encoded_image: str) -> OCRResponse:
|
|
|
|
|
|
|
| 135 |
base64_url = f"data:image/png;base64,{encoded_image}"
|
| 136 |
try:
|
| 137 |
logger.info("Calling OCR API")
|
| 138 |
response = self.client.ocr.process(
|
| 139 |
-
model="mistral-ocr-latest",
|
| 140 |
document=ImageURLChunk(image_url=base64_url),
|
|
|
|
| 141 |
include_image_base64=True
|
| 142 |
)
|
| 143 |
logger.info("OCR API call successful")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
return response
|
| 145 |
-
except (ConnectionError,
|
| 146 |
logger.error(f"Network error during OCR API call: {str(e)}")
|
| 147 |
raise
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
logger.info(f"Processing uploaded PDF: {file_name}")
|
| 152 |
-
try:
|
| 153 |
-
self._check_file_size(pdf_file)
|
| 154 |
-
pdf_path = self._save_uploaded_file(pdf_file, file_name)
|
| 155 |
-
|
| 156 |
-
if not os.path.exists(pdf_path):
|
| 157 |
-
raise FileNotFoundError(f"Saved PDF not found at: {pdf_path}")
|
| 158 |
-
|
| 159 |
-
image_data = self._pdf_to_images(pdf_path)
|
| 160 |
-
if not image_data:
|
| 161 |
-
raise ValueError("No pages converted from PDF")
|
| 162 |
-
|
| 163 |
-
ocr_results = []
|
| 164 |
-
image_paths = [path for path, _ in image_data]
|
| 165 |
-
for i, (_, encoded) in enumerate(image_data):
|
| 166 |
-
response = self._call_ocr_api(encoded)
|
| 167 |
-
markdown_with_images = self._get_combined_markdown_with_images(response, image_paths, i)
|
| 168 |
-
ocr_results.append(markdown_with_images)
|
| 169 |
-
|
| 170 |
-
return "\n\n".join(ocr_results), image_paths
|
| 171 |
except Exception as e:
|
| 172 |
-
|
|
|
|
| 173 |
|
| 174 |
-
def
|
| 175 |
-
logger.info(f"Processing PDF URL: {pdf_url}")
|
| 176 |
try:
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
except Exception as e:
|
| 196 |
-
return self._handle_error("PDF
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
-
def
|
| 199 |
-
file_name = getattr(image_file, 'name', f"image_{int(time.time())}.jpg")
|
| 200 |
-
logger.info(f"Processing uploaded image: {file_name}")
|
| 201 |
try:
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
except Exception as e:
|
| 208 |
-
|
|
|
|
| 209 |
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
else:
|
| 227 |
-
logger.warning(f"No base64 data for image {img.id}")
|
| 228 |
-
if image_paths and page_index is not None and page_index < len(image_paths):
|
| 229 |
-
local_encoded = OCRProcessor._encode_image(image_paths[page_index])
|
| 230 |
-
markdown = markdown.replace(
|
| 231 |
-
f"",
|
| 232 |
-
f""
|
| 233 |
-
)
|
| 234 |
-
else:
|
| 235 |
-
logger.warning(f"No images found in page {i}")
|
| 236 |
-
# Replace known placeholders or append the local image
|
| 237 |
-
if image_paths and page_index is not None and page_index < len(image_paths):
|
| 238 |
-
local_encoded = OCRProcessor._encode_image(image_paths[page_index])
|
| 239 |
-
# Replace placeholders like img-0.jpeg
|
| 240 |
-
placeholder = f"img-{i}.jpeg"
|
| 241 |
-
if placeholder in markdown:
|
| 242 |
-
markdown = markdown.replace(
|
| 243 |
-
placeholder,
|
| 244 |
-
f""
|
| 245 |
-
)
|
| 246 |
-
else:
|
| 247 |
-
# Append the image if no placeholder is found
|
| 248 |
-
markdown += f"\n\n"
|
| 249 |
-
markdown_parts.append(markdown)
|
| 250 |
-
return "\n\n".join(markdown_parts) or "No text or images detected"
|
| 251 |
|
| 252 |
@staticmethod
|
| 253 |
def _handle_error(context: str, error: Exception) -> str:
|
| 254 |
-
logger.error(f"Error in {context}: {str(error)}")
|
| 255 |
return f"**Error in {context}:** {str(error)}"
|
| 256 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
def create_interface():
|
| 258 |
css = """
|
| 259 |
.output-markdown {font-size: 14px; max-height: 500px; overflow-y: auto;}
|
|
@@ -291,17 +352,19 @@ def create_interface():
|
|
| 291 |
)
|
| 292 |
image_preview = gr.Image(label="Preview", height=300)
|
| 293 |
image_output = gr.Markdown(label="OCR Result", elem_classes="output-markdown")
|
|
|
|
| 294 |
process_image_btn = gr.Button("Process Image", variant="primary")
|
| 295 |
|
| 296 |
def process_image(processor, image):
|
| 297 |
if not processor or not image:
|
| 298 |
-
return "Please set API key and upload an image", None
|
| 299 |
-
|
|
|
|
| 300 |
|
| 301 |
process_image_btn.click(
|
| 302 |
fn=process_image,
|
| 303 |
inputs=[processor_state, image_input],
|
| 304 |
-
outputs=[image_output, image_preview]
|
| 305 |
)
|
| 306 |
|
| 307 |
with gr.Tab("PDF OCR"):
|
|
@@ -317,24 +380,32 @@ def create_interface():
|
|
| 317 |
)
|
| 318 |
pdf_gallery = gr.Gallery(label="PDF Pages", height=300)
|
| 319 |
pdf_output = gr.Markdown(label="OCR Result", elem_classes="output-markdown")
|
|
|
|
| 320 |
process_pdf_btn = gr.Button("Process PDF", variant="primary")
|
| 321 |
|
| 322 |
def process_pdf(processor, pdf_file, pdf_url):
|
| 323 |
if not processor:
|
| 324 |
-
return "Please set API key first", []
|
| 325 |
logger.info(f"Received inputs - PDF file: {pdf_file}, PDF URL: {pdf_url}")
|
| 326 |
if pdf_file is not None and hasattr(pdf_file, 'name'):
|
| 327 |
logger.info(f"Processing as uploaded PDF: {pdf_file.name}")
|
| 328 |
-
|
| 329 |
elif pdf_url and pdf_url.strip():
|
| 330 |
logger.info(f"Processing as PDF URL: {pdf_url}")
|
| 331 |
-
|
| 332 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
|
| 334 |
process_pdf_btn.click(
|
| 335 |
fn=process_pdf,
|
| 336 |
inputs=[processor_state, pdf_input, pdf_url_input],
|
| 337 |
-
outputs=[pdf_output, pdf_gallery]
|
| 338 |
)
|
| 339 |
|
| 340 |
return demo
|
|
|
|
| 1 |
import os
|
| 2 |
import base64
|
| 3 |
import gradio as gr
|
| 4 |
+
import json
|
| 5 |
+
from mistralai import Mistral, DocumentURLChunk, ImageURLChunk, TextChunk
|
| 6 |
from mistralai.models import OCRResponse
|
| 7 |
+
from typing import Union, List, Tuple, Dict
|
| 8 |
import requests
|
| 9 |
import shutil
|
| 10 |
import time
|
|
|
|
| 14 |
from concurrent.futures import ThreadPoolExecutor
|
| 15 |
import socket
|
| 16 |
from requests.exceptions import ConnectionError, Timeout
|
| 17 |
+
from pathlib import Path
|
| 18 |
+
from pydantic import BaseModel
|
| 19 |
+
import pycountry
|
| 20 |
+
from enum import Enum
|
| 21 |
+
from PIL import Image
|
| 22 |
|
| 23 |
# Constants
|
| 24 |
SUPPORTED_IMAGE_TYPES = [".jpg", ".png", ".jpeg"]
|
|
|
|
| 36 |
)
|
| 37 |
logger = logging.getLogger(__name__)
|
| 38 |
|
| 39 |
+
# Language Enum for StructuredOCR
|
| 40 |
+
languages = {lang.alpha_2: lang.name for lang in pycountry.languages if hasattr(lang, 'alpha_2')}
|
| 41 |
+
|
| 42 |
+
class LanguageMeta(Enum.__class__):
|
| 43 |
+
def __new__(metacls, cls, bases, classdict):
|
| 44 |
+
for code, name in languages.items():
|
| 45 |
+
classdict[name.upper().replace(' ', '_')] = name
|
| 46 |
+
return super().__new__(metacls, cls, bases, classdict)
|
| 47 |
+
|
| 48 |
+
class Language(Enum, metaclass=LanguageMeta):
|
| 49 |
+
pass
|
| 50 |
+
|
| 51 |
+
class StructuredOCR(BaseModel):
|
| 52 |
+
file_name: str
|
| 53 |
+
topics: list[str]
|
| 54 |
+
languages: list[Language]
|
| 55 |
+
ocr_contents: dict
|
| 56 |
+
|
| 57 |
+
def model_dump_json(self, **kwargs):
|
| 58 |
+
# Custom JSON serialization to handle Language enums
|
| 59 |
+
data = self.model_dump(exclude_unset=True, by_alias=True, mode='json')
|
| 60 |
+
for key, value in data.items():
|
| 61 |
+
if isinstance(value, list) and all(isinstance(item, Language) for item in value):
|
| 62 |
+
data[key] = [item.value for item in value]
|
| 63 |
+
return json.dumps(data, indent=4)
|
| 64 |
+
|
| 65 |
class OCRProcessor:
|
| 66 |
def __init__(self, api_key: str):
|
| 67 |
if not api_key or not isinstance(api_key, str):
|
|
|
|
| 123 |
def _encode_image(image_path: str) -> str:
|
| 124 |
try:
|
| 125 |
with open(image_path, "rb") as image_file:
|
| 126 |
+
encoded = base64.b64encode(image_file.read()).decode('utf-8')
|
| 127 |
+
logger.info(f"Encoded image {image_path} to base64 (length: {len(encoded)})")
|
| 128 |
+
return encoded
|
| 129 |
except Exception as e:
|
| 130 |
logger.error(f"Error encoding image {image_path}: {str(e)}")
|
| 131 |
+
raise ValueError(f"Failed to encode image: {str(e)}")
|
| 132 |
|
| 133 |
@staticmethod
|
| 134 |
def _pdf_to_images(pdf_path: str) -> List[Tuple[str, str]]:
|
|
|
|
| 144 |
range(pdf_document.page_count)
|
| 145 |
))
|
| 146 |
pdf_document.close()
|
| 147 |
+
valid_image_data = [(path, encoded) for path, encoded in image_data if path and encoded]
|
| 148 |
+
if not valid_image_data:
|
| 149 |
+
raise ValueError("No valid pages converted from PDF")
|
| 150 |
+
logger.info(f"Converted {len(valid_image_data)} pages to images")
|
| 151 |
+
return valid_image_data
|
| 152 |
except Exception as e:
|
| 153 |
logger.error(f"Error converting PDF to images: {str(e)}")
|
| 154 |
+
raise
|
| 155 |
|
| 156 |
@staticmethod
|
| 157 |
def _convert_page(pdf_path: str, page_num: int) -> Tuple[str, str]:
|
|
|
|
| 170 |
|
| 171 |
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=2, max=10))
|
| 172 |
def _call_ocr_api(self, encoded_image: str) -> OCRResponse:
|
| 173 |
+
if not isinstance(encoded_image, str):
|
| 174 |
+
raise TypeError(f"Expected encoded_image to be a string, got {type(encoded_image)}")
|
| 175 |
base64_url = f"data:image/png;base64,{encoded_image}"
|
| 176 |
try:
|
| 177 |
logger.info("Calling OCR API")
|
| 178 |
response = self.client.ocr.process(
|
|
|
|
| 179 |
document=ImageURLChunk(image_url=base64_url),
|
| 180 |
+
model="mistral-ocr-latest",
|
| 181 |
include_image_base64=True
|
| 182 |
)
|
| 183 |
logger.info("OCR API call successful")
|
| 184 |
+
try:
|
| 185 |
+
if hasattr(response, 'model_dump_json'):
|
| 186 |
+
response_dict = json.loads(response.model_dump_json())
|
| 187 |
+
else:
|
| 188 |
+
response_dict = {k: v for k, v in response.__dict__.items() if isinstance(v, (str, int, float, list, dict))}
|
| 189 |
+
logger.info(f"Raw OCR response: {json.dumps(response_dict, default=str, indent=4)}")
|
| 190 |
+
except Exception as log_err:
|
| 191 |
+
logger.warning(f"Failed to log raw OCR response: {str(log_err)}")
|
| 192 |
return response
|
| 193 |
+
except (ConnectionError, TimeoutError, socket.error) as e:
|
| 194 |
logger.error(f"Network error during OCR API call: {str(e)}")
|
| 195 |
raise
|
| 196 |
+
except TypeError as e:
|
| 197 |
+
logger.error(f"TypeError in OCR API call: {str(e)}", exc_info=True)
|
| 198 |
+
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
except Exception as e:
|
| 200 |
+
logger.error(f"Unexpected error in OCR API call: {str(e)}", exc_info=True)
|
| 201 |
+
raise
|
| 202 |
|
| 203 |
+
def _process_pdf_with_ocr(self, pdf_path: str) -> Tuple[str, List[str], List[Dict]]:
|
|
|
|
| 204 |
try:
|
| 205 |
+
# Upload PDF and get signed URL
|
| 206 |
+
uploaded_file = self.client.files.upload(
|
| 207 |
+
file={"file_name": Path(pdf_path).stem, "content": Path(pdf_path).read_bytes()},
|
| 208 |
+
purpose="ocr",
|
| 209 |
+
)
|
| 210 |
+
signed_url = self.client.files.get_signed_url(file_id=uploaded_file.id, expiry=1).url
|
| 211 |
+
|
| 212 |
+
# Process with OCR
|
| 213 |
+
ocr_response = self.client.ocr.process(
|
| 214 |
+
document=DocumentURLChunk(document_url=signed_url),
|
| 215 |
+
model="mistral-ocr-latest",
|
| 216 |
+
include_image_base64=True
|
| 217 |
+
)
|
| 218 |
+
markdown, base64_images = self._get_combined_markdown(ocr_response)
|
| 219 |
+
json_results = self._convert_to_structured_json(markdown, pdf_path)
|
| 220 |
+
# Fallback to local images if OCR images are missing
|
| 221 |
+
image_paths = []
|
| 222 |
+
if not any(page.images for page in ocr_response.pages):
|
| 223 |
+
logger.warning("No images found in OCR response; using local images")
|
| 224 |
+
image_data = self._pdf_to_images(pdf_path)
|
| 225 |
+
image_paths = [path for path, _ in image_data]
|
| 226 |
+
else:
|
| 227 |
+
image_paths = [os.path.join(UPLOAD_FOLDER, f"ocr_page_{i}.png") for i in range(len(ocr_response.pages))]
|
| 228 |
+
for i, base64_img in enumerate(base64_images):
|
| 229 |
+
if base64_img:
|
| 230 |
+
try:
|
| 231 |
+
img_data = base64.b64decode(base64_img.split(',')[1])
|
| 232 |
+
with open(image_paths[i], "wb") as f:
|
| 233 |
+
f.write(img_data)
|
| 234 |
+
if os.path.exists(image_paths[i]):
|
| 235 |
+
logger.info(f"Image {image_paths[i]} saved and exists")
|
| 236 |
+
else:
|
| 237 |
+
logger.error(f"Image {image_paths[i]} saved but does not exist")
|
| 238 |
+
except Exception as e:
|
| 239 |
+
logger.error(f"Error saving image {i}: {str(e)}")
|
| 240 |
+
image_paths[i] = None
|
| 241 |
+
image_paths = [path for path in image_paths if path and os.path.exists(path)]
|
| 242 |
+
logger.info(f"Final image paths: {image_paths}")
|
| 243 |
+
return markdown, image_paths, json_results
|
| 244 |
except Exception as e:
|
| 245 |
+
return self._handle_error("PDF OCR processing", e), [], []
|
| 246 |
+
|
| 247 |
+
def _get_combined_markdown(self, ocr_response: OCRResponse) -> Tuple[str, List[str]]:
|
| 248 |
+
markdowns = []
|
| 249 |
+
base64_images = []
|
| 250 |
+
for i, page in enumerate(ocr_response.pages):
|
| 251 |
+
image_data = {}
|
| 252 |
+
for img in page.images:
|
| 253 |
+
if img.image_base64:
|
| 254 |
+
base64_url = f"data:image/png;base64,{img.image_base64}"
|
| 255 |
+
image_data[img.id] = base64_url
|
| 256 |
+
base64_images.append(base64_url)
|
| 257 |
+
logger.info(f"Base64 image {img.id} length: {len(img.image_base64)}")
|
| 258 |
+
else:
|
| 259 |
+
base64_images.append(None)
|
| 260 |
+
markdown = page.markdown or "No text detected"
|
| 261 |
+
markdown = replace_images_in_markdown(markdown, image_data)
|
| 262 |
+
logger.info(f"Page {i} markdown (first 200 chars): {markdown[:200]}...")
|
| 263 |
+
markdowns.append(markdown)
|
| 264 |
+
return "\n\n".join(markdowns), base64_images
|
| 265 |
|
| 266 |
+
def _convert_to_structured_json(self, markdown: str, file_path: str) -> List[Dict]:
|
|
|
|
|
|
|
| 267 |
try:
|
| 268 |
+
text_only_markdown = re.sub(r'!\[.*?\]\(data:image/[^)]+\)', '', markdown)
|
| 269 |
+
logger.info(f"Text-only markdown length: {len(text_only_markdown)}")
|
| 270 |
+
logger.info(f"Text-only markdown content: {text_only_markdown[:200]}...")
|
| 271 |
+
|
| 272 |
+
chat_response = self.client.chat.parse(
|
| 273 |
+
model="pixtral-12b-latest",
|
| 274 |
+
messages=[
|
| 275 |
+
{
|
| 276 |
+
"role": "user",
|
| 277 |
+
"content": f"Given OCR output from a PDF about African history and artifacts, convert to JSON with file_name, topics (e.g., African Artifacts, Tribal History), languages (e.g., English), and ocr_contents (title and list of items with descriptions and image refs).\n\nOCR Output:\n{text_only_markdown}"
|
| 278 |
+
},
|
| 279 |
+
],
|
| 280 |
+
response_format=StructuredOCR,
|
| 281 |
+
temperature=0
|
| 282 |
+
)
|
| 283 |
+
structured_result = chat_response.choices[0].message.parsed
|
| 284 |
+
json_str = structured_result.model_dump_json()
|
| 285 |
+
logger.info(f"Structured JSON: {json_str}")
|
| 286 |
+
return [json.loads(json_str)]
|
| 287 |
except Exception as e:
|
| 288 |
+
logger.error(f"Error converting to structured JSON: {str(e)}", exc_info=True)
|
| 289 |
+
return [{"error": str(e), "file_name": Path(file_path).stem}]
|
| 290 |
|
| 291 |
+
def ocr_uploaded_pdf(self, pdf_file: Union[str, bytes]) -> Tuple[str, List[str], List[Dict]]:
|
| 292 |
+
file_path = self._save_uploaded_file(pdf_file, getattr(pdf_file, 'name', f"pdf_{int(time.time())}.pdf"))
|
| 293 |
+
return self._process_pdf_with_ocr(file_path)
|
| 294 |
+
|
| 295 |
+
def ocr_pdf_url(self, pdf_url: str) -> Tuple[str, List[str], List[Dict]]:
|
| 296 |
+
file_path = self._save_uploaded_file(pdf_url, pdf_url.split('/')[-1] or f"pdf_{int(time.time())}.pdf")
|
| 297 |
+
return self._process_pdf_with_ocr(file_path)
|
| 298 |
+
|
| 299 |
+
def ocr_uploaded_image(self, image_file: Union[str, bytes]) -> Tuple[str, str, Dict]:
|
| 300 |
+
file_path = self._save_uploaded_file(image_file, getattr(image_file, 'name', f"image_{int(time.time())}.jpg"))
|
| 301 |
+
encoded_image = self._encode_image(file_path)
|
| 302 |
+
base64_url = f"data:image/png;base64,{encoded_image}"
|
| 303 |
+
response = self._call_ocr_api(encoded_image)
|
| 304 |
+
markdown, base64_images = self._get_combined_markdown(response)
|
| 305 |
+
json_result = self._convert_to_structured_json(markdown, file_path)[0]
|
| 306 |
+
return markdown, file_path, json_result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 307 |
|
| 308 |
@staticmethod
|
| 309 |
def _handle_error(context: str, error: Exception) -> str:
|
| 310 |
+
logger.error(f"Error in {context}: {str(error)}", exc_info=True)
|
| 311 |
return f"**Error in {context}:** {str(error)}"
|
| 312 |
|
| 313 |
+
def replace_images_in_markdown(markdown_str: str, images_dict: dict) -> str:
|
| 314 |
+
for img_name, base64_str in images_dict.items():
|
| 315 |
+
markdown_str = markdown_str.replace(f"", f"")
|
| 316 |
+
return markdown_str
|
| 317 |
+
|
| 318 |
def create_interface():
|
| 319 |
css = """
|
| 320 |
.output-markdown {font-size: 14px; max-height: 500px; overflow-y: auto;}
|
|
|
|
| 352 |
)
|
| 353 |
image_preview = gr.Image(label="Preview", height=300)
|
| 354 |
image_output = gr.Markdown(label="OCR Result", elem_classes="output-markdown")
|
| 355 |
+
image_json_output = gr.JSON(label="Structured JSON Output")
|
| 356 |
process_image_btn = gr.Button("Process Image", variant="primary")
|
| 357 |
|
| 358 |
def process_image(processor, image):
|
| 359 |
if not processor or not image:
|
| 360 |
+
return "Please set API key and upload an image", None, {}
|
| 361 |
+
markdown, image_path, json_data = processor.ocr_uploaded_image(image)
|
| 362 |
+
return markdown, image_path, json_data
|
| 363 |
|
| 364 |
process_image_btn.click(
|
| 365 |
fn=process_image,
|
| 366 |
inputs=[processor_state, image_input],
|
| 367 |
+
outputs=[image_output, image_preview, image_json_output]
|
| 368 |
)
|
| 369 |
|
| 370 |
with gr.Tab("PDF OCR"):
|
|
|
|
| 380 |
)
|
| 381 |
pdf_gallery = gr.Gallery(label="PDF Pages", height=300)
|
| 382 |
pdf_output = gr.Markdown(label="OCR Result", elem_classes="output-markdown")
|
| 383 |
+
pdf_json_output = gr.JSON(label="Structured JSON Output")
|
| 384 |
process_pdf_btn = gr.Button("Process PDF", variant="primary")
|
| 385 |
|
| 386 |
def process_pdf(processor, pdf_file, pdf_url):
|
| 387 |
if not processor:
|
| 388 |
+
return "Please set API key first", [], {}
|
| 389 |
logger.info(f"Received inputs - PDF file: {pdf_file}, PDF URL: {pdf_url}")
|
| 390 |
if pdf_file is not None and hasattr(pdf_file, 'name'):
|
| 391 |
logger.info(f"Processing as uploaded PDF: {pdf_file.name}")
|
| 392 |
+
markdown, image_paths, json_data = processor.ocr_uploaded_pdf(pdf_file)
|
| 393 |
elif pdf_url and pdf_url.strip():
|
| 394 |
logger.info(f"Processing as PDF URL: {pdf_url}")
|
| 395 |
+
markdown, image_paths, json_data = processor.ocr_pdf_url(pdf_url)
|
| 396 |
+
else:
|
| 397 |
+
return "Please upload a PDF or provide a valid URL", [], {}
|
| 398 |
+
# Fallback to display images if markdown rendering fails
|
| 399 |
+
image_components = []
|
| 400 |
+
for path in image_paths:
|
| 401 |
+
if path and os.path.exists(path):
|
| 402 |
+
image_components.append(gr.Image(path, label=f"Page Image"))
|
| 403 |
+
return markdown, image_paths, json_data, gr.Column(*image_components) if image_components else gr.Markdown("No images available")
|
| 404 |
|
| 405 |
process_pdf_btn.click(
|
| 406 |
fn=process_pdf,
|
| 407 |
inputs=[processor_state, pdf_input, pdf_url_input],
|
| 408 |
+
outputs=[pdf_output, pdf_gallery, pdf_json_output, gr.Column()]
|
| 409 |
)
|
| 410 |
|
| 411 |
return demo
|