Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from datasets import load_dataset | |
| huggingface-cli login | |
| # Load LLaMA model and tokenizer from Hugging Face | |
| model_name = "meta-llama/Llama-3.2-1B" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained(model_name) | |
| # Load financial dataset to enrich responses | |
| dataset = load_dataset("gbharti/finance-alpaca") | |
| # Helper function to extract dataset info (optional enhancement) | |
| def get_insight_from_dataset(): | |
| sample = dataset["train"].shuffle(seed=42).select([0])[0] | |
| return f"Example insight: {sample['text']}" | |
| # Function to process user input and generate financial advice | |
| def financial_advisor(user_input): | |
| # Tokenize the user input | |
| inputs = tokenizer(user_input, return_tensors="pt") | |
| # Generate response using the LLaMA model | |
| outputs = model.generate(**inputs, max_length=256, num_return_sequences=1) | |
| advice = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # Get additional insight from dataset to enrich advice (optional) | |
| insight = get_insight_from_dataset() | |
| # Combine the advice and the insight | |
| full_response = f"Advice: {advice}\n\n{insight}" | |
| return full_response | |
| # Create Gradio Interface | |
| interface = gr.Interface( | |
| fn=financial_advisor, | |
| inputs=gr.Textbox(lines=5, placeholder="Enter your financial question..."), | |
| outputs="text", | |
| title="AI Financial Advisor", | |
| description="Ask me anything related to finance, investments, savings, and more.", | |
| examples=[ | |
| "Should I invest in stocks or real estate?", | |
| "How can I save more money on a tight budget?", | |
| "What are some good investment options for retirement?", | |
| ] | |
| ) | |
| # Launch the Gradio app | |
| if __name__ == "__main__": | |
| interface.launch() | |