Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| from torch.utils.data import DataLoader # <--- 新增這一行 | |
| from transformers import ( | |
| AutoTokenizer, | |
| AutoModelForMultipleChoice, | |
| AutoModelForQuestionAnswering, | |
| default_data_collator # 如果您在 app.py 中也使用它 | |
| ) | |
| import json | |
| import collections | |
| import numpy as np | |
| from datasets import Dataset | |
| from utils_qa import postprocess_qa_predictions | |
| import logging | |
| logger = logging.getLogger(__name__) | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.INFO, # Or logging.DEBUG for more verbose output | |
| ) | |
| # 假設 utils_qa.py 在同一目錄下 (或者您需要將其函數複製過來或確保可導入) | |
| # from utils_qa import postprocess_qa_predictions # 您可能需要完整路徑或將其放入 requirements.txt | |
| # --- 模型和分詞器加載 --- | |
| # 建議從 Hugging Face Hub 加載您已經上傳的模型 | |
| # 這樣您的 Space 就不需要包含模型文件本身,保持輕量 | |
| TOKENIZER_PATH = "bert-base-chinese" # 或者您上傳的分詞器路徑 | |
| SELECTOR_MODEL_PATH = "TheWeeeed/chinese-paragraph-selector" # 替換為您上傳的段落選擇模型 ID | |
| QA_MODEL_PATH = "TheWeeeed/chinese-extractive-qa" # 替換為您上傳的答案抽取模型 ID | |
| try: | |
| tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH) | |
| selector_model = AutoModelForMultipleChoice.from_pretrained(SELECTOR_MODEL_PATH) | |
| qa_model = AutoModelForQuestionAnswering.from_pretrained(QA_MODEL_PATH) | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| selector_model.to(device) | |
| selector_model.eval() | |
| qa_model.to(device) | |
| qa_model.eval() | |
| models_loaded_successfully = True | |
| print(f"模型和分詞器加載成功,使用設備: {device}") | |
| except Exception as e: | |
| models_loaded_successfully = False | |
| error_message = f"加載模型或分詞器時出錯: {e}" | |
| print(error_message) | |
| # 在 Gradio 界面中,我們可以顯示這個錯誤信息 | |
| # --- 從您的 inference_pipeline.py 中提取並調整以下函數 --- | |
| def select_relevant_paragraph_gradio(question_text, candidate_paragraph_texts_str, model, tokenizer, device, max_seq_len): | |
| # candidate_paragraph_texts_str 是一個由換行符分隔的字符串 | |
| candidate_paragraph_texts = [p.strip() for p in candidate_paragraph_texts_str.split('\n') if p.strip()] | |
| if not candidate_paragraph_texts: | |
| return "請至少提供一個候選段落。", -1 | |
| model.eval() | |
| inputs_mc = [] | |
| for p_text in candidate_paragraph_texts: | |
| inputs_mc.append( | |
| tokenizer( | |
| question_text, p_text, add_special_tokens=True, max_length=max_seq_len, | |
| padding="max_length", truncation=True, return_tensors="pt" | |
| ) | |
| ) | |
| input_ids = torch.stack([inp["input_ids"].squeeze(0) for inp in inputs_mc]).unsqueeze(0).to(device) | |
| attention_mask = torch.stack([inp["attention_mask"].squeeze(0) for inp in inputs_mc]).unsqueeze(0).to(device) | |
| token_type_ids = None | |
| if "token_type_ids" in inputs_mc[0]: | |
| token_type_ids = torch.stack([inp["token_type_ids"].squeeze(0) for inp in inputs_mc]).unsqueeze(0).to(device) | |
| with torch.no_grad(): | |
| if token_type_ids is not None: | |
| outputs = model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) | |
| else: | |
| outputs = model(input_ids=input_ids, attention_mask=attention_mask) | |
| predicted_index = torch.argmax(outputs.logits, dim=1).item() | |
| if predicted_index < len(candidate_paragraph_texts): | |
| return candidate_paragraph_texts[predicted_index], predicted_index | |
| else: | |
| return "段落選擇索引錯誤。", -1 | |
| def prepare_features_for_qa_inference_gradio(question_id, question_text, selected_context, tokenizer, max_seq_len, doc_stride): | |
| # 這個函數需要從您的 inference_pipeline.py 中提取並適當修改 | |
| # 它需要返回一個可以被 QA 模型使用的 Dataset 或 features 列表 | |
| # 簡化版: | |
| from datasets import Dataset # 需要在 requirements.txt 中 | |
| qa_example_for_processing = {"id": [question_id], "question": [question_text], "context": [selected_context]} | |
| temp_dataset = Dataset.from_dict(qa_example_for_processing) | |
| pad_on_right = tokenizer.padding_side == "right" | |
| qa_features = temp_dataset.map( | |
| lambda examples: prepare_features_for_qa_inference( # 這是您 inference_pipeline.py 中的函數 | |
| examples, tokenizer, pad_on_right, max_seq_len, doc_stride | |
| ), | |
| batched=True, | |
| remove_columns=temp_dataset.column_names | |
| ) | |
| return qa_features # 返回 Dataset 對象 | |
| # 您 inference_pipeline.py 中的 prepare_features_for_qa_inference 函數需要被複製到這裡 | |
| # 或者確保它可以被導入 | |
| def prepare_features_for_qa_inference(examples, tokenizer, pad_on_right, max_seq_len, doc_stride): | |
| # Initial stripping and assignment | |
| examples["question"] = [q.lstrip() if isinstance(q, str) else "" for q in examples["question"]] | |
| questions_to_tokenize = examples["question" if pad_on_right else "context"] | |
| contexts_to_tokenize = examples["context" if pad_on_right else "question"] | |
| questions_to_tokenize = [q if isinstance(q, str) else "" for q in questions_to_tokenize] | |
| contexts_to_tokenize = [c if isinstance(c, str) else "" for c in contexts_to_tokenize] | |
| # Handle cases where either question or context might be empty after processing | |
| # Tokenizer might handle empty strings, but let's be explicit if one is vital | |
| valid_inputs_for_tokenizer_q = [] | |
| valid_inputs_for_tokenizer_c = [] | |
| original_indices_for_valid_inputs = [] | |
| for i in range(len(questions_to_tokenize)): | |
| q_str = questions_to_tokenize[i] | |
| c_str = contexts_to_tokenize[i] | |
| # Add a basic check: if context is empty, tokenization might be problematic for QA | |
| if q_str.strip() and c_str.strip(): # Ensure both have content after stripping | |
| valid_inputs_for_tokenizer_q.append(q_str) | |
| valid_inputs_for_tokenizer_c.append(c_str) | |
| original_indices_for_valid_inputs.append(i) | |
| else: | |
| logger.warning(f"Skipping tokenization for example index {i} due to empty question or context. Q: '{q_str}', C: '{c_str}'") | |
| if not valid_inputs_for_tokenizer_q: # No valid (q,c) pairs to tokenize | |
| logger.error(f"No valid question/context pairs to tokenize for examples with IDs: {examples.get('id', ['N/A'])}. Returning empty features.") | |
| # Return a structure that .map expects (dictionary of empty lists for all expected keys) | |
| return {key: [] for key in ["input_ids", "attention_mask", "token_type_ids", "example_id", "offset_mapping"]} | |
| tokenized_output = tokenizer( | |
| valid_inputs_for_tokenizer_q, | |
| valid_inputs_for_tokenizer_c, | |
| truncation="only_second" if pad_on_right else "only_first", | |
| max_length=max_seq_len, | |
| stride=doc_stride, | |
| return_overflowing_tokens=True, | |
| return_offsets_mapping=True, | |
| padding="max_length", | |
| ) | |
| # Robustness check and fix for tokenizer outputs | |
| keys_to_fix = ["input_ids", "attention_mask", "token_type_ids"] | |
| pad_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0 | |
| cls_id = tokenizer.cls_token_id if tokenizer.cls_token_id is not None else 101 # Common default | |
| sep_id = tokenizer.sep_token_id if tokenizer.sep_token_id is not None else 102 # Common default | |
| for key in keys_to_fix: | |
| if key in tokenized_output: | |
| for i in range(len(tokenized_output[key])): # Iterate over each feature's list for this key | |
| feature_list = tokenized_output[key][i] | |
| if feature_list is None: # If the entire list for a feature is None | |
| logger.warning(f"Tokenizer produced None for '{key}' at feature index {i}. Replacing with default.") | |
| if key == "input_ids": | |
| default_seq = [cls_id, sep_id] + [pad_id] * (max_seq_len - 2) | |
| tokenized_output[key][i] = default_seq[:max_seq_len] | |
| elif key == "attention_mask": | |
| default_mask = [1, 1] + [0] * (max_seq_len - 2) | |
| tokenized_output[key][i] = default_mask[:max_seq_len] | |
| elif key == "token_type_ids": | |
| tokenized_output[key][i] = [0] * max_seq_len | |
| elif not all(isinstance(x, int) for x in feature_list): # Check for non-integers (like None) | |
| logger.warning(f"Tokenizer produced non-integers in '{key}' at feature index {i}: {str(feature_list)[:100]}... Fixing.") | |
| default_val = pad_id if key == "input_ids" else 0 | |
| tokenized_output[key][i] = [default_val if not isinstance(x, int) else x for x in feature_list] | |
| processed_features = [] | |
| num_generated_features = len(tokenized_output["input_ids"]) | |
| # sample_mapping from tokenized_output might be incorrect if we filtered inputs | |
| # Reconstruct sample_mapping based on original_indices_for_valid_inputs and overflow | |
| # This part gets tricky if return_overflowing_tokens is True and we filtered. | |
| # For simplicity, let's assume for now that if valid_inputs_for_tokenizer_q is not empty, | |
| # tokenizer works on all of them. The more complex case is if tokenizer itself only processes a subset. | |
| # The `overflow_to_sample_mapping` maps generated features to the indices in the *input to the tokenizer*. | |
| # Our input to tokenizer was `valid_inputs_for_tokenizer_q/c`. | |
| overflow_mapping = tokenized_output.pop("overflow_to_sample_mapping") | |
| for i in range(num_generated_features): | |
| feature = {} | |
| # Map the index from the tokenizer's output (which is based on valid_inputs) | |
| # back to the index in the original `examples` batch. | |
| idx_in_valid_inputs = overflow_mapping[i] | |
| original_example_batch_index = original_indices_for_valid_inputs[idx_in_valid_inputs] | |
| feature["input_ids"] = tokenized_output["input_ids"][i] | |
| if "attention_mask" in tokenized_output: | |
| feature["attention_mask"] = tokenized_output["attention_mask"][i] | |
| if "token_type_ids" in tokenized_output: | |
| feature["token_type_ids"] = tokenized_output["token_type_ids"][i] | |
| feature["example_id"] = examples["id"][original_example_batch_index] | |
| current_offset_mapping = tokenized_output["offset_mapping"][i] | |
| sequence_ids = tokenized_output.sequence_ids(i) | |
| context_idx_in_pair = 1 if pad_on_right else 0 | |
| feature["offset_mapping"] = [ | |
| offset if sequence_ids is not None and k < len(sequence_ids) and sequence_ids[k] == context_idx_in_pair else None | |
| for k, offset in enumerate(current_offset_mapping) | |
| ] | |
| processed_features.append(feature) | |
| final_batch = {} | |
| if processed_features: | |
| for key in processed_features[0].keys(): | |
| final_batch[key] = [feature[key] for feature in processed_features] | |
| else: | |
| logger.warning(f"No features could be processed for example IDs: {examples.get('id', ['N/A'])}. Input q: {examples.get('question', ['N/A'])}, c: {examples.get('context', ['N/A'])}") | |
| for key_to_ensure in ['input_ids', 'attention_mask', 'token_type_ids', 'example_id', 'offset_mapping']: | |
| final_batch[key_to_ensure] = [] | |
| return final_batch | |
| # postprocess_qa_predictions 函數也需要從 utils_qa.py 複製或導入 | |
| # from utils_qa import postprocess_qa_predictions # 確保 utils_qa.py 在 Space 的環境中可用 | |
| # --- Gradio 界面函數 --- | |
| def two_stage_qa(question, candidate_paragraphs_str, max_seq_len_mc=512, max_seq_len_qa=384, doc_stride_qa=128, n_best_size=20, max_answer_length=100): | |
| if not models_loaded_successfully: | |
| return f"錯誤: {error_message}", "N/A", "N/A" | |
| if not question.strip() or not candidate_paragraphs_str.strip(): | |
| return "錯誤: 問題和候選段落不能為空。", "N/A", "N/A" | |
| # 階段一 | |
| selected_paragraph, selected_idx = select_relevant_paragraph_gradio( | |
| question, candidate_paragraphs_str, selector_model, tokenizer, device, max_seq_len_mc | |
| ) | |
| if selected_idx == -1: # 段落選擇出錯 | |
| return f"段落選擇出錯: {selected_paragraph}", "N/A", selected_paragraph | |
| # 階段二 | |
| # 準備 QA 特徵 | |
| qa_features_dataset = prepare_features_for_qa_inference_gradio( | |
| "temp_id", question, selected_paragraph, tokenizer, max_seq_len_qa, doc_stride_qa | |
| ) | |
| if len(qa_features_dataset) == 0: | |
| return "錯誤: 無法為選定段落生成QA特徵 (可能段落太短或內容問題)。", f"選中的段落 (索引 {selected_idx}):\n{selected_paragraph}", "N/A" | |
| # 創建 DataLoader | |
| from transformers import default_data_collator # 需要導入 | |
| qa_dataloader = DataLoader( | |
| qa_features_dataset, collate_fn=default_data_collator, batch_size=8 # batch_size可以小一些 | |
| ) | |
| all_start_logits = [] | |
| all_end_logits = [] | |
| for batch in qa_dataloader: | |
| batch = {k: v.to(device) for k, v in batch.items()} | |
| with torch.no_grad(): | |
| outputs_qa = qa_model(**batch) | |
| all_start_logits.append(outputs_qa.start_logits.cpu().numpy()) | |
| all_end_logits.append(outputs_qa.end_logits.cpu().numpy()) | |
| if not all_start_logits: | |
| return "錯誤: QA模型沒有產生logits。", f"選中的段落 (索引 {selected_idx}):\n{selected_paragraph}", "N/A" | |
| start_logits_np = np.concatenate(all_start_logits, axis=0) | |
| end_logits_np = np.concatenate(all_end_logits, axis=0) | |
| # 為了 postprocess_qa_predictions,我們需要原始的 example 數據 | |
| # 它期望一個包含 "answers" 字段的 Dataset | |
| def add_empty_answers(example): | |
| example["answers"] = {"text": [], "answer_start": []} | |
| return example | |
| # temp_dataset 用於 postprocessing | |
| original_example_for_postproc = {"id": ["temp_id"], "question": [question], "context": [selected_paragraph]} | |
| original_dataset_for_postproc = Dataset.from_dict(original_example_for_postproc).map(add_empty_answers) | |
| # 後處理 | |
| # 確保 postprocess_qa_predictions 可用 | |
| predictions_dict = postprocess_qa_predictions( | |
| examples=original_dataset_for_postproc, # 原始的、包含 context 和空 answers 的 Dataset | |
| features=qa_features_dataset, # 包含 offset_mapping 和 example_id 的 Dataset | |
| predictions=(start_logits_np, end_logits_np), | |
| version_2_with_negative=False, | |
| n_best_size=n_best_size, | |
| max_answer_length=max_answer_length, | |
| null_score_diff_threshold=0.0, | |
| output_dir=None, | |
| prefix="gradio_predict", | |
| is_world_process_zero=True | |
| ) | |
| final_answer = predictions_dict.get("temp_id", "未能提取答案。") | |
| return final_answer, f"選中的段落 (索引 {selected_idx}):\n{selected_paragraph}", predictions_dict | |
| # --- 創建 Gradio 界面 --- | |
| # 定義預設的問題和段落內容 | |
| DEFAULT_QUESTION = "世界最高峰是什麼?" | |
| DEFAULT_PARAGRAPHS = ( | |
| "珠穆朗瑪峰是喜馬拉雅山脈的主峰,位於中國與尼泊爾邊界上,是世界海拔最高的山峰。\n" | |
| "喬戈里峰,又稱K2,是喀喇崑崙山脈的主峰,海拔8611米,是世界第二高峰,位於中國與巴基斯坦邊界。\n" | |
| "干城章嘉峰位於喜馬拉雅山脈中段尼泊爾和印度邊界線上,海拔8586米,為世界第三高峰。\n" | |
| "洛子峰,海拔8516米,為世界第四高峰,位於珠穆朗瑪峰以南約3公里處,同屬喜馬拉雅山脈。" | |
| ) | |
| iface = gr.Interface( | |
| fn=two_stage_qa, # 您的兩階段問答處理函數 | |
| inputs=[ | |
| gr.Textbox( | |
| lines=2, | |
| placeholder="輸入您的問題...", | |
| label="問題 (Question)", | |
| value=DEFAULT_QUESTION # <--- 為問題設置預設值 | |
| ), | |
| gr.Textbox( | |
| lines=10, | |
| placeholder="在此處輸入候選段落,每段一行...", | |
| label="候選段落 (Candidate Paragraphs - One per line)", | |
| value=DEFAULT_PARAGRAPHS # <--- 為段落設置預設值 | |
| ) | |
| ], | |
| outputs=[ | |
| gr.Textbox(label="預測答案 (Predicted Answer)"), | |
| gr.Textbox(label="選中的相關段落 (Selected Relevant Paragraph)"), | |
| gr.JSON(label="原始預測字典 (Raw Predictions Dict - for debugging)") | |
| ], | |
| title="兩階段中文抽取式問答系統", | |
| description="輸入一個問題和多個候選段落(每行一個段落)。系統會先選擇最相關的段落,然後從中抽取答案。", | |
| allow_flagging="never" # 或者您希望的標記設置 | |
| ) | |
| if __name__ == "__main__": | |
| if models_loaded_successfully: # 確保模型已加載才啟動 | |
| iface.launch() | |
| else: | |
| print(f"Gradio 應用無法啟動,因為模型加載失敗: {error_message if 'error_message' in locals() else '未知錯誤'}") | |