Spaces:
Sleeping
Sleeping
Looooooong
commited on
Commit
·
daca86f
1
Parent(s):
076d29b
添加 Gradio 應用程序文件
Browse files- app.py +280 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForMultipleChoice, AutoModelForQuestionAnswering
|
| 4 |
+
import json
|
| 5 |
+
import collections # 如果您的 postprocess_qa_predictions 需要
|
| 6 |
+
|
| 7 |
+
# 假設 utils_qa.py 在同一目錄下 (或者您需要將其函數複製過來或確保可導入)
|
| 8 |
+
# from utils_qa import postprocess_qa_predictions # 您可能需要完整路徑或將其放入 requirements.txt
|
| 9 |
+
|
| 10 |
+
# --- 模型和分詞器加載 ---
|
| 11 |
+
# 建議從 Hugging Face Hub 加載您已經上傳的模型
|
| 12 |
+
# 這樣您的 Space 就不需要包含模型文件本身,保持輕量
|
| 13 |
+
TOKENIZER_PATH = "TheWeeeed/bert-base-chinese" # 或者您上傳的分詞器路徑
|
| 14 |
+
SELECTOR_MODEL_PATH = "TheWeeeed/chinese-paragraph-selector" # 替換為您上傳的段落選擇模型 ID
|
| 15 |
+
QA_MODEL_PATH = "TheWeeeed/chinese-extractive-qa" # 替換為您上傳的答案抽取模型 ID
|
| 16 |
+
|
| 17 |
+
try:
|
| 18 |
+
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH)
|
| 19 |
+
selector_model = AutoModelForMultipleChoice.from_pretrained(SELECTOR_MODEL_PATH)
|
| 20 |
+
qa_model = AutoModelForQuestionAnswering.from_pretrained(QA_MODEL_PATH)
|
| 21 |
+
|
| 22 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 23 |
+
selector_model.to(device)
|
| 24 |
+
selector_model.eval()
|
| 25 |
+
qa_model.to(device)
|
| 26 |
+
qa_model.eval()
|
| 27 |
+
models_loaded_successfully = True
|
| 28 |
+
print(f"模型和分詞器加載成功,使用設備: {device}")
|
| 29 |
+
except Exception as e:
|
| 30 |
+
models_loaded_successfully = False
|
| 31 |
+
error_message = f"加載模型或分詞器時出錯: {e}"
|
| 32 |
+
print(error_message)
|
| 33 |
+
# 在 Gradio 界面中,我們可以顯示這個錯誤信息
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# --- 從您的 inference_pipeline.py 中提取並調整以下函數 ---
|
| 37 |
+
def select_relevant_paragraph_gradio(question_text, candidate_paragraph_texts_str, model, tokenizer, device, max_seq_len):
|
| 38 |
+
# candidate_paragraph_texts_str 是一個由換行符分隔的字符串
|
| 39 |
+
candidate_paragraph_texts = [p.strip() for p in candidate_paragraph_texts_str.split('\n') if p.strip()]
|
| 40 |
+
if not candidate_paragraph_texts:
|
| 41 |
+
return "請至少提供一個候選段落。", -1
|
| 42 |
+
|
| 43 |
+
model.eval()
|
| 44 |
+
inputs_mc = []
|
| 45 |
+
for p_text in candidate_paragraph_texts:
|
| 46 |
+
inputs_mc.append(
|
| 47 |
+
tokenizer(
|
| 48 |
+
question_text, p_text, add_special_tokens=True, max_length=max_seq_len,
|
| 49 |
+
padding="max_length", truncation=True, return_tensors="pt"
|
| 50 |
+
)
|
| 51 |
+
)
|
| 52 |
+
input_ids = torch.stack([inp["input_ids"].squeeze(0) for inp in inputs_mc]).unsqueeze(0).to(device)
|
| 53 |
+
attention_mask = torch.stack([inp["attention_mask"].squeeze(0) for inp in inputs_mc]).unsqueeze(0).to(device)
|
| 54 |
+
token_type_ids = None
|
| 55 |
+
if "token_type_ids" in inputs_mc[0]:
|
| 56 |
+
token_type_ids = torch.stack([inp["token_type_ids"].squeeze(0) for inp in inputs_mc]).unsqueeze(0).to(device)
|
| 57 |
+
|
| 58 |
+
with torch.no_grad():
|
| 59 |
+
if token_type_ids is not None:
|
| 60 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
|
| 61 |
+
else:
|
| 62 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
| 63 |
+
predicted_index = torch.argmax(outputs.logits, dim=1).item()
|
| 64 |
+
if predicted_index < len(candidate_paragraph_texts):
|
| 65 |
+
return candidate_paragraph_texts[predicted_index], predicted_index
|
| 66 |
+
else:
|
| 67 |
+
return "段落選擇索引錯誤。", -1
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def prepare_features_for_qa_inference_gradio(question_id, question_text, selected_context, tokenizer, max_seq_len, doc_stride):
|
| 71 |
+
# 這個函數需要從您的 inference_pipeline.py 中提取並適當修改
|
| 72 |
+
# 它需要返回一個可以被 QA 模型使用的 Dataset 或 features 列表
|
| 73 |
+
# 簡化版:
|
| 74 |
+
from datasets import Dataset # 需要在 requirements.txt 中
|
| 75 |
+
|
| 76 |
+
qa_example_for_processing = {"id": [question_id], "question": [question_text], "context": [selected_context]}
|
| 77 |
+
temp_dataset = Dataset.from_dict(qa_example_for_processing)
|
| 78 |
+
|
| 79 |
+
pad_on_right = tokenizer.padding_side == "right"
|
| 80 |
+
|
| 81 |
+
qa_features = temp_dataset.map(
|
| 82 |
+
lambda examples: prepare_features_for_qa_inference( # 這是您 inference_pipeline.py 中的函數
|
| 83 |
+
examples, tokenizer, pad_on_right, max_seq_len, doc_stride
|
| 84 |
+
),
|
| 85 |
+
batched=True,
|
| 86 |
+
remove_columns=temp_dataset.column_names
|
| 87 |
+
)
|
| 88 |
+
return qa_features # 返回 Dataset 對象
|
| 89 |
+
|
| 90 |
+
# 您 inference_pipeline.py 中的 prepare_features_for_qa_inference 函數需要被複製到這裡
|
| 91 |
+
# 或者確保它可以被導入
|
| 92 |
+
def prepare_features_for_qa_inference(examples, tokenizer, pad_on_right, max_seq_len, doc_stride):
|
| 93 |
+
examples["question"] = [q.lstrip() if isinstance(q, str) else "" for q in examples["question"]]
|
| 94 |
+
questions = examples["question" if pad_on_right else "context"]
|
| 95 |
+
contexts = examples["context" if pad_on_right else "question"]
|
| 96 |
+
|
| 97 |
+
# Ensure questions and contexts are lists of strings, handle None by converting to empty string
|
| 98 |
+
questions = [q if isinstance(q, str) else "" for q in questions]
|
| 99 |
+
contexts = [c if isinstance(c, str) else "" for c in contexts]
|
| 100 |
+
|
| 101 |
+
tokenized_output = tokenizer(
|
| 102 |
+
questions,
|
| 103 |
+
contexts,
|
| 104 |
+
truncation="only_second" if pad_on_right else "only_first",
|
| 105 |
+
max_length=max_seq_len,
|
| 106 |
+
stride=doc_stride,
|
| 107 |
+
return_overflowing_tokens=True,
|
| 108 |
+
return_offsets_mapping=True,
|
| 109 |
+
padding="max_length", # This ensures all primary outputs are lists of numbers of fixed length
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
# The tokenizer with padding="max_length" should already produce lists of integers
|
| 113 |
+
# for input_ids, attention_mask, token_type_ids.
|
| 114 |
+
# The main risk of 'None' would be if the input strings were so problematic
|
| 115 |
+
# that the tokenizer failed internally in a way not producing standard padded output.
|
| 116 |
+
# However, standard tokenizers are quite robust with empty strings when padding is enabled.
|
| 117 |
+
|
| 118 |
+
# Let's directly create the structure we need for the output Dataset.
|
| 119 |
+
# `tokenized_output` is a BatchEncoding (dict-like).
|
| 120 |
+
# If `return_overflowing_tokens=True` and N features are generated from one example,
|
| 121 |
+
# then `tokenized_output['input_ids']` is a list of N lists.
|
| 122 |
+
|
| 123 |
+
processed_features = []
|
| 124 |
+
num_generated_features = len(tokenized_output["input_ids"]) # Number of features due to overflow
|
| 125 |
+
|
| 126 |
+
# `sample_mapping` maps each generated feature back to its original example index in the input `examples`
|
| 127 |
+
sample_mapping = tokenized_output.pop("overflow_to_sample_mapping", list(range(len(examples["id"]))))
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
for i in range(num_generated_features):
|
| 131 |
+
feature = {}
|
| 132 |
+
original_example_index = sample_mapping[i] # Index of the original example this feature came from
|
| 133 |
+
|
| 134 |
+
# These should always be lists of integers due to padding="max_length"
|
| 135 |
+
feature["input_ids"] = tokenized_output["input_ids"][i]
|
| 136 |
+
if "attention_mask" in tokenized_output:
|
| 137 |
+
feature["attention_mask"] = tokenized_output["attention_mask"][i]
|
| 138 |
+
if "token_type_ids" in tokenized_output:
|
| 139 |
+
feature["token_type_ids"] = tokenized_output["token_type_ids"][i]
|
| 140 |
+
|
| 141 |
+
# These might not be strictly needed by the model's forward pass but are used by postprocessing
|
| 142 |
+
feature["example_id"] = examples["id"][original_example_index]
|
| 143 |
+
|
| 144 |
+
current_offset_mapping = tokenized_output["offset_mapping"][i]
|
| 145 |
+
sequence_ids = tokenized_output.sequence_ids(i) # Pass the index of the feature
|
| 146 |
+
context_idx_in_pair = 1 if pad_on_right else 0
|
| 147 |
+
|
| 148 |
+
feature["offset_mapping"] = [
|
| 149 |
+
offset if sequence_ids[k] == context_idx_in_pair else None
|
| 150 |
+
for k, offset in enumerate(current_offset_mapping)
|
| 151 |
+
]
|
| 152 |
+
processed_features.append(feature)
|
| 153 |
+
|
| 154 |
+
# The .map function expects a dictionary where keys are column names
|
| 155 |
+
# and values are lists of features for those columns.
|
| 156 |
+
# Since we are processing one original example at a time (batched=True on a Dataset of 1 row),
|
| 157 |
+
# and this one example can produce multiple features, `processed_features` is a list of dicts.
|
| 158 |
+
# We need to return a dictionary of lists.
|
| 159 |
+
if not processed_features: # Should not happen if tokenizer works, but as a safeguard
|
| 160 |
+
# Return structure with empty lists to match expected features by .map()
|
| 161 |
+
# This case indicates an issue with tokenizing the input example.
|
| 162 |
+
logger.error(f"No features generated for example ID {examples['id'][0]}. Input q: {examples['question'][0]}, c: {examples['context'][0]}")
|
| 163 |
+
return {
|
| 164 |
+
"input_ids": [], "token_type_ids": [], "attention_mask": [],
|
| 165 |
+
"offset_mapping": [], "example_id": []
|
| 166 |
+
}
|
| 167 |
+
|
| 168 |
+
# Transpose the list of feature dictionaries into a dictionary of feature lists
|
| 169 |
+
# This is what the .map(batched=True) function expects as a return value
|
| 170 |
+
final_batch = {}
|
| 171 |
+
for key in processed_features[0].keys():
|
| 172 |
+
final_batch[key] = [feature[key] for feature in processed_features]
|
| 173 |
+
|
| 174 |
+
for key_to_check in ["input_ids", "attention_mask", "token_type_ids"]:
|
| 175 |
+
if key_to_check in final_batch:
|
| 176 |
+
for i, lst in enumerate(final_batch[key_to_check]):
|
| 177 |
+
if lst is None:
|
| 178 |
+
raise ValueError(f"在 prepare_features_for_qa_inference 中,{key_to_check} 的第 {i} 個特徵列表為 None!")
|
| 179 |
+
if any(x is None for x in lst):
|
| 180 |
+
raise ValueError(f"在 prepare_features_for_qa_inference 中,{key_to_check} 的第 {i} 個特徵列表內部包含 None!內容: {lst[:20]}")
|
| 181 |
+
|
| 182 |
+
return final_batch
|
| 183 |
+
|
| 184 |
+
# postprocess_qa_predictions 函數也需要從 utils_qa.py 複製或導入
|
| 185 |
+
# from utils_qa import postprocess_qa_predictions # 確保 utils_qa.py 在 Space 的環境中可用
|
| 186 |
+
|
| 187 |
+
# --- Gradio 界面函數 ---
|
| 188 |
+
def two_stage_qa(question, candidate_paragraphs_str, max_seq_len_mc=512, max_seq_len_qa=384, doc_stride_qa=128, n_best_size=20, max_answer_length=100):
|
| 189 |
+
if not models_loaded_successfully:
|
| 190 |
+
return f"錯誤: {error_message}", "N/A", "N/A"
|
| 191 |
+
|
| 192 |
+
if not question.strip() or not candidate_paragraphs_str.strip():
|
| 193 |
+
return "錯誤: 問題和候���段落不能為空。", "N/A", "N/A"
|
| 194 |
+
|
| 195 |
+
# 階段一
|
| 196 |
+
selected_paragraph, selected_idx = select_relevant_paragraph_gradio(
|
| 197 |
+
question, candidate_paragraphs_str, selector_model, tokenizer, device, max_seq_len_mc
|
| 198 |
+
)
|
| 199 |
+
if selected_idx == -1: # 段落選擇出錯
|
| 200 |
+
return f"段落選擇出錯: {selected_paragraph}", "N/A", selected_paragraph
|
| 201 |
+
|
| 202 |
+
# 階段二
|
| 203 |
+
# 準備 QA 特徵
|
| 204 |
+
qa_features_dataset = prepare_features_for_qa_inference_gradio(
|
| 205 |
+
"temp_id", question, selected_paragraph, tokenizer, max_seq_len_qa, doc_stride_qa
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
if len(qa_features_dataset) == 0:
|
| 209 |
+
return "錯誤: 無法為選定段落生成QA特徵 (可能段落太短或內容問題)。", f"選中的段落 (索引 {selected_idx}):\n{selected_paragraph}", "N/A"
|
| 210 |
+
|
| 211 |
+
# 創建 DataLoader
|
| 212 |
+
from transformers import default_data_collator # 需要導入
|
| 213 |
+
qa_dataloader = DataLoader(
|
| 214 |
+
qa_features_dataset, collate_fn=default_data_collator, batch_size=8 # batch_size可以小一些
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
all_start_logits = []
|
| 218 |
+
all_end_logits = []
|
| 219 |
+
for batch in qa_dataloader:
|
| 220 |
+
batch = {k: v.to(device) for k, v in batch.items()}
|
| 221 |
+
with torch.no_grad():
|
| 222 |
+
outputs_qa = qa_model(**batch)
|
| 223 |
+
all_start_logits.append(outputs_qa.start_logits.cpu().numpy())
|
| 224 |
+
all_end_logits.append(outputs_qa.end_logits.cpu().numpy())
|
| 225 |
+
|
| 226 |
+
if not all_start_logits:
|
| 227 |
+
return "錯誤: QA模型沒有產生logits。", f"選中的段落 (索引 {selected_idx}):\n{selected_paragraph}", "N/A"
|
| 228 |
+
|
| 229 |
+
start_logits_np = np.concatenate(all_start_logits, axis=0)
|
| 230 |
+
end_logits_np = np.concatenate(all_end_logits, axis=0)
|
| 231 |
+
|
| 232 |
+
# 為了 postprocess_qa_predictions,我們需要原始的 example 數據
|
| 233 |
+
# 它期望一個包含 "answers" 字段的 Dataset
|
| 234 |
+
def add_empty_answers(example):
|
| 235 |
+
example["answers"] = {"text": [], "answer_start": []}
|
| 236 |
+
return example
|
| 237 |
+
|
| 238 |
+
# temp_dataset 用於 postprocessing
|
| 239 |
+
original_example_for_postproc = {"id": ["temp_id"], "question": [question], "context": [selected_paragraph]}
|
| 240 |
+
original_dataset_for_postproc = Dataset.from_dict(original_example_for_postproc).map(add_empty_answers)
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
# 後處理
|
| 244 |
+
# 確保 postprocess_qa_predictions 可用
|
| 245 |
+
predictions_dict = postprocess_qa_predictions(
|
| 246 |
+
examples=original_dataset_for_postproc, # 原始的、包含 context 和空 answers 的 Dataset
|
| 247 |
+
features=qa_features_dataset, # 包含 offset_mapping 和 example_id 的 Dataset
|
| 248 |
+
predictions=(start_logits_np, end_logits_np),
|
| 249 |
+
version_2_with_negative=False,
|
| 250 |
+
n_best_size=n_best_size,
|
| 251 |
+
max_answer_length=max_answer_length,
|
| 252 |
+
null_score_diff_threshold=0.0,
|
| 253 |
+
output_dir=None,
|
| 254 |
+
prefix="gradio_predict",
|
| 255 |
+
is_world_process_zero=True
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
final_answer = predictions_dict.get("temp_id", "未能提取答案。")
|
| 259 |
+
|
| 260 |
+
return final_answer, f"選中的段落 (索引 {selected_idx}):\n{selected_paragraph}", predictions_dict
|
| 261 |
+
|
| 262 |
+
# --- 創建 Gradio 界面 ---
|
| 263 |
+
iface = gr.Interface(
|
| 264 |
+
fn=two_stage_qa,
|
| 265 |
+
inputs=[
|
| 266 |
+
gr.Textbox(lines=2, placeholder="輸入您的問題...", label="問題 (Question)"),
|
| 267 |
+
gr.Textbox(lines=10, placeholder="在此處輸入候選段落,每段一行...", label="候選段落 (Candidate Paragraphs - One per line)")
|
| 268 |
+
],
|
| 269 |
+
outputs=[
|
| 270 |
+
gr.Textbox(label="預測答案 (Predicted Answer)"),
|
| 271 |
+
gr.Textbox(label="選中的相關段落 (Selected Relevant Paragraph)"),
|
| 272 |
+
gr.JSON(label="原始預測字典 (Raw Predictions Dict - for debugging)") # 可選的調試輸出
|
| 273 |
+
],
|
| 274 |
+
title="兩階段中文抽取式問答系統",
|
| 275 |
+
description="輸入一個問題和多個候選段落(每行一個段落)。系統會先選擇最相關的段落,然後從中抽取答案。",
|
| 276 |
+
allow_flagging="never"
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
if __name__ == "__main__":
|
| 280 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
torch
|
| 3 |
+
datasets
|
| 4 |
+
gradio
|
| 5 |
+
pandas
|
| 6 |
+
numpy
|