Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ ALIGN model configuration""" | |
| import os | |
| from typing import TYPE_CHECKING, List, Union | |
| if TYPE_CHECKING: | |
| pass | |
| from ...configuration_utils import PretrainedConfig | |
| from ...utils import logging | |
| logger = logging.get_logger(__name__) | |
| ALIGN_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
| "kakaobrain/align-base": "https://huggingface.co/kakaobrain/align-base/resolve/main/config.json", | |
| } | |
| class AlignTextConfig(PretrainedConfig): | |
| r""" | |
| This is the configuration class to store the configuration of a [`AlignTextModel`]. It is used to instantiate a | |
| ALIGN text encoder according to the specified arguments, defining the model architecture. Instantiating a | |
| configuration with the defaults will yield a similar configuration to that of the text encoder of the ALIGN | |
| [kakaobrain/align-base](https://huggingface.co/kakaobrain/align-base) architecture. The default values here are | |
| copied from BERT. | |
| Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| documentation from [`PretrainedConfig`] for more information. | |
| Args: | |
| vocab_size (`int`, *optional*, defaults to 30522): | |
| Vocabulary size of the Align Text model. Defines the number of different tokens that can be represented by | |
| the `inputs_ids` passed when calling [`AlignTextModel`]. | |
| hidden_size (`int`, *optional*, defaults to 768): | |
| Dimensionality of the encoder layers and the pooler layer. | |
| num_hidden_layers (`int`, *optional*, defaults to 12): | |
| Number of hidden layers in the Transformer encoder. | |
| num_attention_heads (`int`, *optional*, defaults to 12): | |
| Number of attention heads for each attention layer in the Transformer encoder. | |
| intermediate_size (`int`, *optional*, defaults to 3072): | |
| Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | |
| hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): | |
| The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
| `"relu"`, `"silu"` and `"gelu_new"` are supported. | |
| hidden_dropout_prob (`float`, *optional*, defaults to 0.1): | |
| The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
| attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): | |
| The dropout ratio for the attention probabilities. | |
| max_position_embeddings (`int`, *optional*, defaults to 512): | |
| The maximum sequence length that this model might ever be used with. Typically set this to something large | |
| just in case (e.g., 512 or 1024 or 2048). | |
| type_vocab_size (`int`, *optional*, defaults to 2): | |
| The vocabulary size of the `token_type_ids` passed when calling [`AlignTextModel`]. | |
| initializer_range (`float`, *optional*, defaults to 0.02): | |
| The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
| layer_norm_eps (`float`, *optional*, defaults to 1e-12): | |
| The epsilon used by the layer normalization layers. | |
| pad_token_id (`int`, *optional*, defaults to 0): | |
| Padding token id. | |
| position_embedding_type (`str`, *optional*, defaults to `"absolute"`): | |
| Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For | |
| positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to | |
| [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). | |
| For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models | |
| with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). | |
| use_cache (`bool`, *optional*, defaults to `True`): | |
| Whether or not the model should return the last key/values attentions (not used by all models). Only | |
| relevant if `config.is_decoder=True`. | |
| Example: | |
| ```python | |
| >>> from transformers import AlignTextConfig, AlignTextModel | |
| >>> # Initializing a AlignTextConfig with kakaobrain/align-base style configuration | |
| >>> configuration = AlignTextConfig() | |
| >>> # Initializing a AlignTextModel (with random weights) from the kakaobrain/align-base style configuration | |
| >>> model = AlignTextModel(configuration) | |
| >>> # Accessing the model configuration | |
| >>> configuration = model.config | |
| ```""" | |
| model_type = "align_text_model" | |
| def __init__( | |
| self, | |
| vocab_size=30522, | |
| hidden_size=768, | |
| num_hidden_layers=12, | |
| num_attention_heads=12, | |
| intermediate_size=3072, | |
| hidden_act="gelu", | |
| hidden_dropout_prob=0.1, | |
| attention_probs_dropout_prob=0.1, | |
| max_position_embeddings=512, | |
| type_vocab_size=2, | |
| initializer_range=0.02, | |
| layer_norm_eps=1e-12, | |
| pad_token_id=0, | |
| position_embedding_type="absolute", | |
| use_cache=True, | |
| **kwargs, | |
| ): | |
| super().__init__(**kwargs) | |
| self.vocab_size = vocab_size | |
| self.hidden_size = hidden_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.hidden_act = hidden_act | |
| self.intermediate_size = intermediate_size | |
| self.hidden_dropout_prob = hidden_dropout_prob | |
| self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
| self.max_position_embeddings = max_position_embeddings | |
| self.type_vocab_size = type_vocab_size | |
| self.initializer_range = initializer_range | |
| self.layer_norm_eps = layer_norm_eps | |
| self.position_embedding_type = position_embedding_type | |
| self.use_cache = use_cache | |
| self.pad_token_id = pad_token_id | |
| def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
| cls._set_token_in_kwargs(kwargs) | |
| config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
| # get the text config dict if we are loading from AlignConfig | |
| if config_dict.get("model_type") == "align": | |
| config_dict = config_dict["text_config"] | |
| if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
| logger.warning( | |
| f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
| f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
| ) | |
| return cls.from_dict(config_dict, **kwargs) | |
| class AlignVisionConfig(PretrainedConfig): | |
| r""" | |
| This is the configuration class to store the configuration of a [`AlignVisionModel`]. It is used to instantiate a | |
| ALIGN vision encoder according to the specified arguments, defining the model architecture. Instantiating a | |
| configuration with the defaults will yield a similar configuration to that of the vision encoder of the ALIGN | |
| [kakaobrain/align-base](https://huggingface.co/kakaobrain/align-base) architecture. The default values are copied | |
| from EfficientNet (efficientnet-b7) | |
| Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| documentation from [`PretrainedConfig`] for more information. | |
| Args: | |
| num_channels (`int`, *optional*, defaults to 3): | |
| The number of input channels. | |
| image_size (`int`, *optional*, defaults to 600): | |
| The input image size. | |
| width_coefficient (`float`, *optional*, defaults to 2.0): | |
| Scaling coefficient for network width at each stage. | |
| depth_coefficient (`float`, *optional*, defaults to 3.1): | |
| Scaling coefficient for network depth at each stage. | |
| depth_divisor `int`, *optional*, defaults to 8): | |
| A unit of network width. | |
| kernel_sizes (`List[int]`, *optional*, defaults to `[3, 3, 5, 3, 5, 5, 3]`): | |
| List of kernel sizes to be used in each block. | |
| in_channels (`List[int]`, *optional*, defaults to `[32, 16, 24, 40, 80, 112, 192]`): | |
| List of input channel sizes to be used in each block for convolutional layers. | |
| out_channels (`List[int]`, *optional*, defaults to `[16, 24, 40, 80, 112, 192, 320]`): | |
| List of output channel sizes to be used in each block for convolutional layers. | |
| depthwise_padding (`List[int]`, *optional*, defaults to `[]`): | |
| List of block indices with square padding. | |
| strides (`List[int]`, *optional*, defaults to `[1, 2, 2, 2, 1, 2, 1]`): | |
| List of stride sizes to be used in each block for convolutional layers. | |
| num_block_repeats (`List[int]`, *optional*, defaults to `[1, 2, 2, 3, 3, 4, 1]`): | |
| List of the number of times each block is to repeated. | |
| expand_ratios (`List[int]`, *optional*, defaults to `[1, 6, 6, 6, 6, 6, 6]`): | |
| List of scaling coefficient of each block. | |
| squeeze_expansion_ratio (`float`, *optional*, defaults to 0.25): | |
| Squeeze expansion ratio. | |
| hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | |
| The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`, | |
| `"selu", `"gelu_new"`, `"silu"` and `"mish"` are supported. | |
| hiddem_dim (`int`, *optional*, defaults to 1280): | |
| The hidden dimension of the layer before the classification head. | |
| pooling_type (`str` or `function`, *optional*, defaults to `"mean"`): | |
| Type of final pooling to be applied before the dense classification head. Available options are [`"mean"`, | |
| `"max"`] | |
| initializer_range (`float`, *optional*, defaults to 0.02): | |
| The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
| batch_norm_eps (`float`, *optional*, defaults to 1e-3): | |
| The epsilon used by the batch normalization layers. | |
| batch_norm_momentum (`float`, *optional*, defaults to 0.99): | |
| The momentum used by the batch normalization layers. | |
| drop_connect_rate (`float`, *optional*, defaults to 0.2): | |
| The drop rate for skip connections. | |
| Example: | |
| ```python | |
| >>> from transformers import AlignVisionConfig, AlignVisionModel | |
| >>> # Initializing a AlignVisionConfig with kakaobrain/align-base style configuration | |
| >>> configuration = AlignVisionConfig() | |
| >>> # Initializing a AlignVisionModel (with random weights) from the kakaobrain/align-base style configuration | |
| >>> model = AlignVisionModel(configuration) | |
| >>> # Accessing the model configuration | |
| >>> configuration = model.config | |
| ```""" | |
| model_type = "align_vision_model" | |
| def __init__( | |
| self, | |
| num_channels: int = 3, | |
| image_size: int = 600, | |
| width_coefficient: float = 2.0, | |
| depth_coefficient: float = 3.1, | |
| depth_divisor: int = 8, | |
| kernel_sizes: List[int] = [3, 3, 5, 3, 5, 5, 3], | |
| in_channels: List[int] = [32, 16, 24, 40, 80, 112, 192], | |
| out_channels: List[int] = [16, 24, 40, 80, 112, 192, 320], | |
| depthwise_padding: List[int] = [], | |
| strides: List[int] = [1, 2, 2, 2, 1, 2, 1], | |
| num_block_repeats: List[int] = [1, 2, 2, 3, 3, 4, 1], | |
| expand_ratios: List[int] = [1, 6, 6, 6, 6, 6, 6], | |
| squeeze_expansion_ratio: float = 0.25, | |
| hidden_act: str = "swish", | |
| hidden_dim: int = 2560, | |
| pooling_type: str = "mean", | |
| initializer_range: float = 0.02, | |
| batch_norm_eps: float = 0.001, | |
| batch_norm_momentum: float = 0.99, | |
| drop_connect_rate: float = 0.2, | |
| **kwargs, | |
| ): | |
| super().__init__(**kwargs) | |
| self.num_channels = num_channels | |
| self.image_size = image_size | |
| self.width_coefficient = width_coefficient | |
| self.depth_coefficient = depth_coefficient | |
| self.depth_divisor = depth_divisor | |
| self.kernel_sizes = kernel_sizes | |
| self.in_channels = in_channels | |
| self.out_channels = out_channels | |
| self.depthwise_padding = depthwise_padding | |
| self.strides = strides | |
| self.num_block_repeats = num_block_repeats | |
| self.expand_ratios = expand_ratios | |
| self.squeeze_expansion_ratio = squeeze_expansion_ratio | |
| self.hidden_act = hidden_act | |
| self.hidden_dim = hidden_dim | |
| self.pooling_type = pooling_type | |
| self.initializer_range = initializer_range | |
| self.batch_norm_eps = batch_norm_eps | |
| self.batch_norm_momentum = batch_norm_momentum | |
| self.drop_connect_rate = drop_connect_rate | |
| self.num_hidden_layers = sum(num_block_repeats) * 4 | |
| def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
| cls._set_token_in_kwargs(kwargs) | |
| config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
| # get the vision config dict if we are loading from AlignConfig | |
| if config_dict.get("model_type") == "align": | |
| config_dict = config_dict["vision_config"] | |
| if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
| logger.warning( | |
| f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
| f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
| ) | |
| return cls.from_dict(config_dict, **kwargs) | |
| class AlignConfig(PretrainedConfig): | |
| r""" | |
| [`AlignConfig`] is the configuration class to store the configuration of a [`AlignModel`]. It is used to | |
| instantiate a ALIGN model according to the specified arguments, defining the text model and vision model configs. | |
| Instantiating a configuration with the defaults will yield a similar configuration to that of the ALIGN | |
| [kakaobrain/align-base](https://huggingface.co/kakaobrain/align-base) architecture. | |
| Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| documentation from [`PretrainedConfig`] for more information. | |
| Args: | |
| text_config (`dict`, *optional*): | |
| Dictionary of configuration options used to initialize [`AlignTextConfig`]. | |
| vision_config (`dict`, *optional*): | |
| Dictionary of configuration options used to initialize [`AlignVisionConfig`]. | |
| projection_dim (`int`, *optional*, defaults to 640): | |
| Dimentionality of text and vision projection layers. | |
| temperature_init_value (`float`, *optional*, defaults to 1.0): | |
| The inital value of the *temperature* paramter. Default is used as per the original ALIGN implementation. | |
| initializer_range (`float`, *optional*, defaults to 0.02): | |
| The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
| kwargs (*optional*): | |
| Dictionary of keyword arguments. | |
| Example: | |
| ```python | |
| >>> from transformers import AlignConfig, AlignModel | |
| >>> # Initializing a AlignConfig with kakaobrain/align-base style configuration | |
| >>> configuration = AlignConfig() | |
| >>> # Initializing a AlignModel (with random weights) from the kakaobrain/align-base style configuration | |
| >>> model = AlignModel(configuration) | |
| >>> # Accessing the model configuration | |
| >>> configuration = model.config | |
| >>> # We can also initialize a AlignConfig from a AlignTextConfig and a AlignVisionConfig | |
| >>> from transformers import AlignTextConfig, AlignVisionConfig | |
| >>> # Initializing ALIGN Text and Vision configurations | |
| >>> config_text = AlignTextConfig() | |
| >>> config_vision = AlignVisionConfig() | |
| >>> config = AlignConfig.from_text_vision_configs(config_text, config_vision) | |
| ```""" | |
| model_type = "align" | |
| def __init__( | |
| self, | |
| text_config=None, | |
| vision_config=None, | |
| projection_dim=640, | |
| temperature_init_value=1.0, | |
| initializer_range=0.02, | |
| **kwargs, | |
| ): | |
| super().__init__(**kwargs) | |
| if text_config is None: | |
| text_config = {} | |
| logger.info("text_config is None. Initializing the AlignTextConfig with default values.") | |
| if vision_config is None: | |
| vision_config = {} | |
| logger.info("vision_config is None. Initializing the AlignVisionConfig with default values.") | |
| self.text_config = AlignTextConfig(**text_config) | |
| self.vision_config = AlignVisionConfig(**vision_config) | |
| self.projection_dim = projection_dim | |
| self.temperature_init_value = temperature_init_value | |
| self.initializer_range = initializer_range | |
| def from_text_vision_configs(cls, text_config: AlignTextConfig, vision_config: AlignVisionConfig, **kwargs): | |
| r""" | |
| Instantiate a [`AlignConfig`] (or a derived class) from align text model configuration and align vision model | |
| configuration. | |
| Returns: | |
| [`AlignConfig`]: An instance of a configuration object | |
| """ | |
| return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs) | |