Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2021 The HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ AutoProcessor class.""" | |
| import importlib | |
| import inspect | |
| import json | |
| import os | |
| import warnings | |
| from collections import OrderedDict | |
| # Build the list of all feature extractors | |
| from ...configuration_utils import PretrainedConfig | |
| from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code | |
| from ...feature_extraction_utils import FeatureExtractionMixin | |
| from ...image_processing_utils import ImageProcessingMixin | |
| from ...tokenization_utils import TOKENIZER_CONFIG_FILE | |
| from ...utils import FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging | |
| from .auto_factory import _LazyAutoMapping | |
| from .configuration_auto import ( | |
| CONFIG_MAPPING_NAMES, | |
| AutoConfig, | |
| model_type_to_module_name, | |
| replace_list_option_in_docstrings, | |
| ) | |
| from .feature_extraction_auto import AutoFeatureExtractor | |
| from .image_processing_auto import AutoImageProcessor | |
| from .tokenization_auto import AutoTokenizer | |
| logger = logging.get_logger(__name__) | |
| PROCESSOR_MAPPING_NAMES = OrderedDict( | |
| [ | |
| ("align", "AlignProcessor"), | |
| ("altclip", "AltCLIPProcessor"), | |
| ("bark", "BarkProcessor"), | |
| ("blip", "BlipProcessor"), | |
| ("blip-2", "Blip2Processor"), | |
| ("bridgetower", "BridgeTowerProcessor"), | |
| ("chinese_clip", "ChineseCLIPProcessor"), | |
| ("clap", "ClapProcessor"), | |
| ("clip", "CLIPProcessor"), | |
| ("clipseg", "CLIPSegProcessor"), | |
| ("flava", "FlavaProcessor"), | |
| ("git", "GitProcessor"), | |
| ("groupvit", "CLIPProcessor"), | |
| ("hubert", "Wav2Vec2Processor"), | |
| ("idefics", "IdeficsProcessor"), | |
| ("instructblip", "InstructBlipProcessor"), | |
| ("layoutlmv2", "LayoutLMv2Processor"), | |
| ("layoutlmv3", "LayoutLMv3Processor"), | |
| ("markuplm", "MarkupLMProcessor"), | |
| ("mctct", "MCTCTProcessor"), | |
| ("mgp-str", "MgpstrProcessor"), | |
| ("oneformer", "OneFormerProcessor"), | |
| ("owlvit", "OwlViTProcessor"), | |
| ("pix2struct", "Pix2StructProcessor"), | |
| ("pop2piano", "Pop2PianoProcessor"), | |
| ("sam", "SamProcessor"), | |
| ("sew", "Wav2Vec2Processor"), | |
| ("sew-d", "Wav2Vec2Processor"), | |
| ("speech_to_text", "Speech2TextProcessor"), | |
| ("speech_to_text_2", "Speech2Text2Processor"), | |
| ("speecht5", "SpeechT5Processor"), | |
| ("trocr", "TrOCRProcessor"), | |
| ("tvlt", "TvltProcessor"), | |
| ("unispeech", "Wav2Vec2Processor"), | |
| ("unispeech-sat", "Wav2Vec2Processor"), | |
| ("vilt", "ViltProcessor"), | |
| ("vision-text-dual-encoder", "VisionTextDualEncoderProcessor"), | |
| ("wav2vec2", "Wav2Vec2Processor"), | |
| ("wav2vec2-conformer", "Wav2Vec2Processor"), | |
| ("wavlm", "Wav2Vec2Processor"), | |
| ("whisper", "WhisperProcessor"), | |
| ("xclip", "XCLIPProcessor"), | |
| ] | |
| ) | |
| PROCESSOR_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, PROCESSOR_MAPPING_NAMES) | |
| def processor_class_from_name(class_name: str): | |
| for module_name, processors in PROCESSOR_MAPPING_NAMES.items(): | |
| if class_name in processors: | |
| module_name = model_type_to_module_name(module_name) | |
| module = importlib.import_module(f".{module_name}", "transformers.models") | |
| try: | |
| return getattr(module, class_name) | |
| except AttributeError: | |
| continue | |
| for processor in PROCESSOR_MAPPING._extra_content.values(): | |
| if getattr(processor, "__name__", None) == class_name: | |
| return processor | |
| # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main | |
| # init and we return the proper dummy to get an appropriate error message. | |
| main_module = importlib.import_module("transformers") | |
| if hasattr(main_module, class_name): | |
| return getattr(main_module, class_name) | |
| return None | |
| class AutoProcessor: | |
| r""" | |
| This is a generic processor class that will be instantiated as one of the processor classes of the library when | |
| created with the [`AutoProcessor.from_pretrained`] class method. | |
| This class cannot be instantiated directly using `__init__()` (throws an error). | |
| """ | |
| def __init__(self): | |
| raise EnvironmentError( | |
| "AutoProcessor is designed to be instantiated " | |
| "using the `AutoProcessor.from_pretrained(pretrained_model_name_or_path)` method." | |
| ) | |
| def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): | |
| r""" | |
| Instantiate one of the processor classes of the library from a pretrained model vocabulary. | |
| The processor class to instantiate is selected based on the `model_type` property of the config object (either | |
| passed as an argument or loaded from `pretrained_model_name_or_path` if possible): | |
| List options | |
| Params: | |
| pretrained_model_name_or_path (`str` or `os.PathLike`): | |
| This can be either: | |
| - a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on | |
| huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or | |
| namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. | |
| - a path to a *directory* containing a processor files saved using the `save_pretrained()` method, | |
| e.g., `./my_model_directory/`. | |
| cache_dir (`str` or `os.PathLike`, *optional*): | |
| Path to a directory in which a downloaded pretrained model feature extractor should be cached if the | |
| standard cache should not be used. | |
| force_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to force to (re-)download the feature extractor files and override the cached versions | |
| if they exist. | |
| resume_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to delete incompletely received file. Attempts to resume the download if such a file | |
| exists. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. | |
| token (`str` or *bool*, *optional*): | |
| The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated | |
| when running `huggingface-cli login` (stored in `~/.huggingface`). | |
| revision (`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |
| git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any | |
| identifier allowed by git. | |
| return_unused_kwargs (`bool`, *optional*, defaults to `False`): | |
| If `False`, then this function returns just the final feature extractor object. If `True`, then this | |
| functions returns a `Tuple(feature_extractor, unused_kwargs)` where *unused_kwargs* is a dictionary | |
| consisting of the key/value pairs whose keys are not feature extractor attributes: i.e., the part of | |
| `kwargs` which has not been used to update `feature_extractor` and is otherwise ignored. | |
| trust_remote_code (`bool`, *optional*, defaults to `False`): | |
| Whether or not to allow for custom models defined on the Hub in their own modeling files. This option | |
| should only be set to `True` for repositories you trust and in which you have read the code, as it will | |
| execute code present on the Hub on your local machine. | |
| kwargs (`Dict[str, Any]`, *optional*): | |
| The values in kwargs of any keys which are feature extractor attributes will be used to override the | |
| loaded values. Behavior concerning key/value pairs whose keys are *not* feature extractor attributes is | |
| controlled by the `return_unused_kwargs` keyword parameter. | |
| <Tip> | |
| Passing `token=True` is required when you want to use a private model. | |
| </Tip> | |
| Examples: | |
| ```python | |
| >>> from transformers import AutoProcessor | |
| >>> # Download processor from huggingface.co and cache. | |
| >>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h") | |
| >>> # If processor files are in a directory (e.g. processor was saved using *save_pretrained('./test/saved_model/')*) | |
| >>> # processor = AutoProcessor.from_pretrained("./test/saved_model/") | |
| ```""" | |
| use_auth_token = kwargs.pop("use_auth_token", None) | |
| if use_auth_token is not None: | |
| warnings.warn( | |
| "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning | |
| ) | |
| if kwargs.get("token", None) is not None: | |
| raise ValueError( | |
| "`token` and `use_auth_token` are both specified. Please set only the argument `token`." | |
| ) | |
| kwargs["token"] = use_auth_token | |
| config = kwargs.pop("config", None) | |
| trust_remote_code = kwargs.pop("trust_remote_code", None) | |
| kwargs["_from_auto"] = True | |
| processor_class = None | |
| processor_auto_map = None | |
| # First, let's see if we have a preprocessor config. | |
| # Filter the kwargs for `get_file_from_repo`. | |
| get_file_from_repo_kwargs = { | |
| key: kwargs[key] for key in inspect.signature(get_file_from_repo).parameters.keys() if key in kwargs | |
| } | |
| # Let's start by checking whether the processor class is saved in an image processor | |
| preprocessor_config_file = get_file_from_repo( | |
| pretrained_model_name_or_path, FEATURE_EXTRACTOR_NAME, **get_file_from_repo_kwargs | |
| ) | |
| if preprocessor_config_file is not None: | |
| config_dict, _ = ImageProcessingMixin.get_image_processor_dict(pretrained_model_name_or_path, **kwargs) | |
| processor_class = config_dict.get("processor_class", None) | |
| if "AutoProcessor" in config_dict.get("auto_map", {}): | |
| processor_auto_map = config_dict["auto_map"]["AutoProcessor"] | |
| # If not found, let's check whether the processor class is saved in a feature extractor config | |
| if preprocessor_config_file is not None and processor_class is None: | |
| config_dict, _ = FeatureExtractionMixin.get_feature_extractor_dict(pretrained_model_name_or_path, **kwargs) | |
| processor_class = config_dict.get("processor_class", None) | |
| if "AutoProcessor" in config_dict.get("auto_map", {}): | |
| processor_auto_map = config_dict["auto_map"]["AutoProcessor"] | |
| if processor_class is None: | |
| # Next, let's check whether the processor class is saved in a tokenizer | |
| tokenizer_config_file = get_file_from_repo( | |
| pretrained_model_name_or_path, TOKENIZER_CONFIG_FILE, **get_file_from_repo_kwargs | |
| ) | |
| if tokenizer_config_file is not None: | |
| with open(tokenizer_config_file, encoding="utf-8") as reader: | |
| config_dict = json.load(reader) | |
| processor_class = config_dict.get("processor_class", None) | |
| if "AutoProcessor" in config_dict.get("auto_map", {}): | |
| processor_auto_map = config_dict["auto_map"]["AutoProcessor"] | |
| if processor_class is None: | |
| # Otherwise, load config, if it can be loaded. | |
| if not isinstance(config, PretrainedConfig): | |
| config = AutoConfig.from_pretrained( | |
| pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs | |
| ) | |
| # And check if the config contains the processor class. | |
| processor_class = getattr(config, "processor_class", None) | |
| if hasattr(config, "auto_map") and "AutoProcessor" in config.auto_map: | |
| processor_auto_map = config.auto_map["AutoProcessor"] | |
| if processor_class is not None: | |
| processor_class = processor_class_from_name(processor_class) | |
| has_remote_code = processor_auto_map is not None | |
| has_local_code = processor_class is not None or type(config) in PROCESSOR_MAPPING | |
| trust_remote_code = resolve_trust_remote_code( | |
| trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code | |
| ) | |
| if has_remote_code and trust_remote_code: | |
| processor_class = get_class_from_dynamic_module( | |
| processor_auto_map, pretrained_model_name_or_path, **kwargs | |
| ) | |
| _ = kwargs.pop("code_revision", None) | |
| if os.path.isdir(pretrained_model_name_or_path): | |
| processor_class.register_for_auto_class() | |
| return processor_class.from_pretrained( | |
| pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs | |
| ) | |
| elif processor_class is not None: | |
| return processor_class.from_pretrained( | |
| pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs | |
| ) | |
| # Last try: we use the PROCESSOR_MAPPING. | |
| elif type(config) in PROCESSOR_MAPPING: | |
| return PROCESSOR_MAPPING[type(config)].from_pretrained(pretrained_model_name_or_path, **kwargs) | |
| # At this stage, there doesn't seem to be a `Processor` class available for this model, so let's try a | |
| # tokenizer. | |
| try: | |
| return AutoTokenizer.from_pretrained( | |
| pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs | |
| ) | |
| except Exception: | |
| try: | |
| return AutoImageProcessor.from_pretrained( | |
| pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs | |
| ) | |
| except Exception: | |
| pass | |
| try: | |
| return AutoFeatureExtractor.from_pretrained( | |
| pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs | |
| ) | |
| except Exception: | |
| pass | |
| raise ValueError( | |
| f"Unrecognized processing class in {pretrained_model_name_or_path}. Can't instantiate a processor, a " | |
| "tokenizer, an image processor or a feature extractor for this model. Make sure the repository contains" | |
| "the files of at least one of those processing classes." | |
| ) | |
| def register(config_class, processor_class, exist_ok=False): | |
| """ | |
| Register a new processor for this class. | |
| Args: | |
| config_class ([`PretrainedConfig`]): | |
| The configuration corresponding to the model to register. | |
| processor_class ([`FeatureExtractorMixin`]): The processor to register. | |
| """ | |
| PROCESSOR_MAPPING.register(config_class, processor_class, exist_ok=exist_ok) | |