Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2018 The HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Auto Tokenizer class.""" | |
| import importlib | |
| import json | |
| import os | |
| import warnings | |
| from collections import OrderedDict | |
| from typing import TYPE_CHECKING, Dict, Optional, Tuple, Union | |
| from ...configuration_utils import PretrainedConfig | |
| from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code | |
| from ...tokenization_utils import PreTrainedTokenizer | |
| from ...tokenization_utils_base import TOKENIZER_CONFIG_FILE | |
| from ...utils import cached_file, extract_commit_hash, is_sentencepiece_available, is_tokenizers_available, logging | |
| from ..encoder_decoder import EncoderDecoderConfig | |
| from .auto_factory import _LazyAutoMapping | |
| from .configuration_auto import ( | |
| CONFIG_MAPPING_NAMES, | |
| AutoConfig, | |
| config_class_to_model_type, | |
| model_type_to_module_name, | |
| replace_list_option_in_docstrings, | |
| ) | |
| if is_tokenizers_available(): | |
| from ...tokenization_utils_fast import PreTrainedTokenizerFast | |
| else: | |
| PreTrainedTokenizerFast = None | |
| logger = logging.get_logger(__name__) | |
| if TYPE_CHECKING: | |
| # This significantly improves completion suggestion performance when | |
| # the transformers package is used with Microsoft's Pylance language server. | |
| TOKENIZER_MAPPING_NAMES: OrderedDict[str, Tuple[Optional[str], Optional[str]]] = OrderedDict() | |
| else: | |
| TOKENIZER_MAPPING_NAMES = OrderedDict( | |
| [ | |
| ( | |
| "albert", | |
| ( | |
| "AlbertTokenizer" if is_sentencepiece_available() else None, | |
| "AlbertTokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ("align", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), | |
| ("bark", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), | |
| ("bart", ("BartTokenizer", "BartTokenizerFast")), | |
| ( | |
| "barthez", | |
| ( | |
| "BarthezTokenizer" if is_sentencepiece_available() else None, | |
| "BarthezTokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ("bartpho", ("BartphoTokenizer", None)), | |
| ("bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), | |
| ("bert-generation", ("BertGenerationTokenizer" if is_sentencepiece_available() else None, None)), | |
| ("bert-japanese", ("BertJapaneseTokenizer", None)), | |
| ("bertweet", ("BertweetTokenizer", None)), | |
| ( | |
| "big_bird", | |
| ( | |
| "BigBirdTokenizer" if is_sentencepiece_available() else None, | |
| "BigBirdTokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ("bigbird_pegasus", ("PegasusTokenizer", "PegasusTokenizerFast" if is_tokenizers_available() else None)), | |
| ("biogpt", ("BioGptTokenizer", None)), | |
| ("blenderbot", ("BlenderbotTokenizer", "BlenderbotTokenizerFast")), | |
| ("blenderbot-small", ("BlenderbotSmallTokenizer", None)), | |
| ("blip", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), | |
| ("blip-2", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), | |
| ("bloom", (None, "BloomTokenizerFast" if is_tokenizers_available() else None)), | |
| ("bridgetower", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)), | |
| ("bros", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), | |
| ("byt5", ("ByT5Tokenizer", None)), | |
| ( | |
| "camembert", | |
| ( | |
| "CamembertTokenizer" if is_sentencepiece_available() else None, | |
| "CamembertTokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ("canine", ("CanineTokenizer", None)), | |
| ("chinese_clip", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), | |
| ( | |
| "clap", | |
| ( | |
| "RobertaTokenizer", | |
| "RobertaTokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ( | |
| "clip", | |
| ( | |
| "CLIPTokenizer", | |
| "CLIPTokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ( | |
| "clipseg", | |
| ( | |
| "CLIPTokenizer", | |
| "CLIPTokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ( | |
| "code_llama", | |
| ( | |
| "CodeLlamaTokenizer" if is_sentencepiece_available() else None, | |
| "CodeLlamaTokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ("codegen", ("CodeGenTokenizer", "CodeGenTokenizerFast" if is_tokenizers_available() else None)), | |
| ("convbert", ("ConvBertTokenizer", "ConvBertTokenizerFast" if is_tokenizers_available() else None)), | |
| ( | |
| "cpm", | |
| ( | |
| "CpmTokenizer" if is_sentencepiece_available() else None, | |
| "CpmTokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ("cpmant", ("CpmAntTokenizer", None)), | |
| ("ctrl", ("CTRLTokenizer", None)), | |
| ("data2vec-audio", ("Wav2Vec2CTCTokenizer", None)), | |
| ("data2vec-text", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)), | |
| ("deberta", ("DebertaTokenizer", "DebertaTokenizerFast" if is_tokenizers_available() else None)), | |
| ( | |
| "deberta-v2", | |
| ( | |
| "DebertaV2Tokenizer" if is_sentencepiece_available() else None, | |
| "DebertaV2TokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ("distilbert", ("DistilBertTokenizer", "DistilBertTokenizerFast" if is_tokenizers_available() else None)), | |
| ( | |
| "dpr", | |
| ( | |
| "DPRQuestionEncoderTokenizer", | |
| "DPRQuestionEncoderTokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ("electra", ("ElectraTokenizer", "ElectraTokenizerFast" if is_tokenizers_available() else None)), | |
| ("ernie", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), | |
| ("ernie_m", ("ErnieMTokenizer" if is_sentencepiece_available() else None, None)), | |
| ("esm", ("EsmTokenizer", None)), | |
| ("flaubert", ("FlaubertTokenizer", None)), | |
| ("fnet", ("FNetTokenizer", "FNetTokenizerFast" if is_tokenizers_available() else None)), | |
| ("fsmt", ("FSMTTokenizer", None)), | |
| ("funnel", ("FunnelTokenizer", "FunnelTokenizerFast" if is_tokenizers_available() else None)), | |
| ("git", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), | |
| ("gpt-sw3", ("GPTSw3Tokenizer" if is_sentencepiece_available() else None, None)), | |
| ("gpt2", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), | |
| ("gpt_bigcode", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), | |
| ("gpt_neo", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), | |
| ("gpt_neox", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)), | |
| ("gpt_neox_japanese", ("GPTNeoXJapaneseTokenizer", None)), | |
| ("gptj", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), | |
| ("gptsan-japanese", ("GPTSanJapaneseTokenizer", None)), | |
| ("groupvit", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)), | |
| ("herbert", ("HerbertTokenizer", "HerbertTokenizerFast" if is_tokenizers_available() else None)), | |
| ("hubert", ("Wav2Vec2CTCTokenizer", None)), | |
| ("ibert", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)), | |
| ("idefics", (None, "LlamaTokenizerFast" if is_tokenizers_available() else None)), | |
| ("instructblip", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), | |
| ("jukebox", ("JukeboxTokenizer", None)), | |
| ("layoutlm", ("LayoutLMTokenizer", "LayoutLMTokenizerFast" if is_tokenizers_available() else None)), | |
| ("layoutlmv2", ("LayoutLMv2Tokenizer", "LayoutLMv2TokenizerFast" if is_tokenizers_available() else None)), | |
| ("layoutlmv3", ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast" if is_tokenizers_available() else None)), | |
| ("layoutxlm", ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast" if is_tokenizers_available() else None)), | |
| ("led", ("LEDTokenizer", "LEDTokenizerFast" if is_tokenizers_available() else None)), | |
| ("lilt", ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast" if is_tokenizers_available() else None)), | |
| ( | |
| "llama", | |
| ( | |
| "LlamaTokenizer" if is_sentencepiece_available() else None, | |
| "LlamaTokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ("longformer", ("LongformerTokenizer", "LongformerTokenizerFast" if is_tokenizers_available() else None)), | |
| ( | |
| "longt5", | |
| ( | |
| "T5Tokenizer" if is_sentencepiece_available() else None, | |
| "T5TokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ("luke", ("LukeTokenizer", None)), | |
| ("lxmert", ("LxmertTokenizer", "LxmertTokenizerFast" if is_tokenizers_available() else None)), | |
| ("m2m_100", ("M2M100Tokenizer" if is_sentencepiece_available() else None, None)), | |
| ("marian", ("MarianTokenizer" if is_sentencepiece_available() else None, None)), | |
| ( | |
| "mbart", | |
| ( | |
| "MBartTokenizer" if is_sentencepiece_available() else None, | |
| "MBartTokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ( | |
| "mbart50", | |
| ( | |
| "MBart50Tokenizer" if is_sentencepiece_available() else None, | |
| "MBart50TokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ("mega", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)), | |
| ("megatron-bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), | |
| ("mgp-str", ("MgpstrTokenizer", None)), | |
| ( | |
| "mistral", | |
| ( | |
| "LlamaTokenizer" if is_sentencepiece_available() else None, | |
| "LlamaTokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ("mluke", ("MLukeTokenizer" if is_sentencepiece_available() else None, None)), | |
| ("mobilebert", ("MobileBertTokenizer", "MobileBertTokenizerFast" if is_tokenizers_available() else None)), | |
| ("mpnet", ("MPNetTokenizer", "MPNetTokenizerFast" if is_tokenizers_available() else None)), | |
| ("mpt", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)), | |
| ("mra", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)), | |
| ( | |
| "mt5", | |
| ( | |
| "MT5Tokenizer" if is_sentencepiece_available() else None, | |
| "MT5TokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ("musicgen", ("T5Tokenizer", "T5TokenizerFast" if is_tokenizers_available() else None)), | |
| ("mvp", ("MvpTokenizer", "MvpTokenizerFast" if is_tokenizers_available() else None)), | |
| ("nezha", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), | |
| ( | |
| "nllb", | |
| ( | |
| "NllbTokenizer" if is_sentencepiece_available() else None, | |
| "NllbTokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ( | |
| "nllb-moe", | |
| ( | |
| "NllbTokenizer" if is_sentencepiece_available() else None, | |
| "NllbTokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ( | |
| "nystromformer", | |
| ( | |
| "AlbertTokenizer" if is_sentencepiece_available() else None, | |
| "AlbertTokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ("oneformer", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)), | |
| ("openai-gpt", ("OpenAIGPTTokenizer", "OpenAIGPTTokenizerFast" if is_tokenizers_available() else None)), | |
| ("opt", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), | |
| ("owlvit", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)), | |
| ( | |
| "pegasus", | |
| ( | |
| "PegasusTokenizer" if is_sentencepiece_available() else None, | |
| "PegasusTokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ( | |
| "pegasus_x", | |
| ( | |
| "PegasusTokenizer" if is_sentencepiece_available() else None, | |
| "PegasusTokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ( | |
| "perceiver", | |
| ( | |
| "PerceiverTokenizer", | |
| None, | |
| ), | |
| ), | |
| ( | |
| "persimmon", | |
| ( | |
| "LlamaTokenizer" if is_sentencepiece_available() else None, | |
| "LlamaTokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ("phobert", ("PhobertTokenizer", None)), | |
| ("pix2struct", ("T5Tokenizer", "T5TokenizerFast" if is_tokenizers_available() else None)), | |
| ("plbart", ("PLBartTokenizer" if is_sentencepiece_available() else None, None)), | |
| ("prophetnet", ("ProphetNetTokenizer", None)), | |
| ("qdqbert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), | |
| ("rag", ("RagTokenizer", None)), | |
| ("realm", ("RealmTokenizer", "RealmTokenizerFast" if is_tokenizers_available() else None)), | |
| ( | |
| "reformer", | |
| ( | |
| "ReformerTokenizer" if is_sentencepiece_available() else None, | |
| "ReformerTokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ( | |
| "rembert", | |
| ( | |
| "RemBertTokenizer" if is_sentencepiece_available() else None, | |
| "RemBertTokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ("retribert", ("RetriBertTokenizer", "RetriBertTokenizerFast" if is_tokenizers_available() else None)), | |
| ("roberta", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)), | |
| ( | |
| "roberta-prelayernorm", | |
| ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None), | |
| ), | |
| ("roc_bert", ("RoCBertTokenizer", None)), | |
| ("roformer", ("RoFormerTokenizer", "RoFormerTokenizerFast" if is_tokenizers_available() else None)), | |
| ("rwkv", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)), | |
| ("speech_to_text", ("Speech2TextTokenizer" if is_sentencepiece_available() else None, None)), | |
| ("speech_to_text_2", ("Speech2Text2Tokenizer", None)), | |
| ("speecht5", ("SpeechT5Tokenizer" if is_sentencepiece_available() else None, None)), | |
| ("splinter", ("SplinterTokenizer", "SplinterTokenizerFast")), | |
| ( | |
| "squeezebert", | |
| ("SqueezeBertTokenizer", "SqueezeBertTokenizerFast" if is_tokenizers_available() else None), | |
| ), | |
| ( | |
| "switch_transformers", | |
| ( | |
| "T5Tokenizer" if is_sentencepiece_available() else None, | |
| "T5TokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ( | |
| "t5", | |
| ( | |
| "T5Tokenizer" if is_sentencepiece_available() else None, | |
| "T5TokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ("tapas", ("TapasTokenizer", None)), | |
| ("tapex", ("TapexTokenizer", None)), | |
| ("transfo-xl", ("TransfoXLTokenizer", None)), | |
| ( | |
| "umt5", | |
| ( | |
| "T5Tokenizer" if is_sentencepiece_available() else None, | |
| "T5TokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ("vilt", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), | |
| ("visual_bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), | |
| ("vits", ("VitsTokenizer", None)), | |
| ("wav2vec2", ("Wav2Vec2CTCTokenizer", None)), | |
| ("wav2vec2-conformer", ("Wav2Vec2CTCTokenizer", None)), | |
| ("wav2vec2_phoneme", ("Wav2Vec2PhonemeCTCTokenizer", None)), | |
| ("whisper", ("WhisperTokenizer", "WhisperTokenizerFast" if is_tokenizers_available() else None)), | |
| ("xclip", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)), | |
| ( | |
| "xglm", | |
| ( | |
| "XGLMTokenizer" if is_sentencepiece_available() else None, | |
| "XGLMTokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ("xlm", ("XLMTokenizer", None)), | |
| ("xlm-prophetnet", ("XLMProphetNetTokenizer" if is_sentencepiece_available() else None, None)), | |
| ( | |
| "xlm-roberta", | |
| ( | |
| "XLMRobertaTokenizer" if is_sentencepiece_available() else None, | |
| "XLMRobertaTokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ( | |
| "xlm-roberta-xl", | |
| ( | |
| "XLMRobertaTokenizer" if is_sentencepiece_available() else None, | |
| "XLMRobertaTokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ( | |
| "xlnet", | |
| ( | |
| "XLNetTokenizer" if is_sentencepiece_available() else None, | |
| "XLNetTokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ( | |
| "xmod", | |
| ( | |
| "XLMRobertaTokenizer" if is_sentencepiece_available() else None, | |
| "XLMRobertaTokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ( | |
| "yoso", | |
| ( | |
| "AlbertTokenizer" if is_sentencepiece_available() else None, | |
| "AlbertTokenizerFast" if is_tokenizers_available() else None, | |
| ), | |
| ), | |
| ] | |
| ) | |
| TOKENIZER_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TOKENIZER_MAPPING_NAMES) | |
| CONFIG_TO_TYPE = {v: k for k, v in CONFIG_MAPPING_NAMES.items()} | |
| def tokenizer_class_from_name(class_name: str): | |
| if class_name == "PreTrainedTokenizerFast": | |
| return PreTrainedTokenizerFast | |
| for module_name, tokenizers in TOKENIZER_MAPPING_NAMES.items(): | |
| if class_name in tokenizers: | |
| module_name = model_type_to_module_name(module_name) | |
| module = importlib.import_module(f".{module_name}", "transformers.models") | |
| try: | |
| return getattr(module, class_name) | |
| except AttributeError: | |
| continue | |
| for config, tokenizers in TOKENIZER_MAPPING._extra_content.items(): | |
| for tokenizer in tokenizers: | |
| if getattr(tokenizer, "__name__", None) == class_name: | |
| return tokenizer | |
| # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main | |
| # init and we return the proper dummy to get an appropriate error message. | |
| main_module = importlib.import_module("transformers") | |
| if hasattr(main_module, class_name): | |
| return getattr(main_module, class_name) | |
| return None | |
| def get_tokenizer_config( | |
| pretrained_model_name_or_path: Union[str, os.PathLike], | |
| cache_dir: Optional[Union[str, os.PathLike]] = None, | |
| force_download: bool = False, | |
| resume_download: bool = False, | |
| proxies: Optional[Dict[str, str]] = None, | |
| token: Optional[Union[bool, str]] = None, | |
| revision: Optional[str] = None, | |
| local_files_only: bool = False, | |
| subfolder: str = "", | |
| **kwargs, | |
| ): | |
| """ | |
| Loads the tokenizer configuration from a pretrained model tokenizer configuration. | |
| Args: | |
| pretrained_model_name_or_path (`str` or `os.PathLike`): | |
| This can be either: | |
| - a string, the *model id* of a pretrained model configuration hosted inside a model repo on | |
| huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced | |
| under a user or organization name, like `dbmdz/bert-base-german-cased`. | |
| - a path to a *directory* containing a configuration file saved using the | |
| [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`. | |
| cache_dir (`str` or `os.PathLike`, *optional*): | |
| Path to a directory in which a downloaded pretrained model configuration should be cached if the standard | |
| cache should not be used. | |
| force_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to force to (re-)download the configuration files and override the cached versions if they | |
| exist. | |
| resume_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. | |
| token (`str` or *bool*, *optional*): | |
| The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated | |
| when running `huggingface-cli login` (stored in `~/.huggingface`). | |
| revision (`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |
| git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any | |
| identifier allowed by git. | |
| local_files_only (`bool`, *optional*, defaults to `False`): | |
| If `True`, will only try to load the tokenizer configuration from local files. | |
| subfolder (`str`, *optional*, defaults to `""`): | |
| In case the tokenizer config is located inside a subfolder of the model repo on huggingface.co, you can | |
| specify the folder name here. | |
| <Tip> | |
| Passing `token=True` is required when you want to use a private model. | |
| </Tip> | |
| Returns: | |
| `Dict`: The configuration of the tokenizer. | |
| Examples: | |
| ```python | |
| # Download configuration from huggingface.co and cache. | |
| tokenizer_config = get_tokenizer_config("bert-base-uncased") | |
| # This model does not have a tokenizer config so the result will be an empty dict. | |
| tokenizer_config = get_tokenizer_config("xlm-roberta-base") | |
| # Save a pretrained tokenizer locally and you can reload its config | |
| from transformers import AutoTokenizer | |
| tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") | |
| tokenizer.save_pretrained("tokenizer-test") | |
| tokenizer_config = get_tokenizer_config("tokenizer-test") | |
| ```""" | |
| use_auth_token = kwargs.pop("use_auth_token", None) | |
| if use_auth_token is not None: | |
| warnings.warn( | |
| "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning | |
| ) | |
| if token is not None: | |
| raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") | |
| token = use_auth_token | |
| commit_hash = kwargs.get("_commit_hash", None) | |
| resolved_config_file = cached_file( | |
| pretrained_model_name_or_path, | |
| TOKENIZER_CONFIG_FILE, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| resume_download=resume_download, | |
| proxies=proxies, | |
| token=token, | |
| revision=revision, | |
| local_files_only=local_files_only, | |
| subfolder=subfolder, | |
| _raise_exceptions_for_missing_entries=False, | |
| _raise_exceptions_for_connection_errors=False, | |
| _commit_hash=commit_hash, | |
| ) | |
| if resolved_config_file is None: | |
| logger.info("Could not locate the tokenizer configuration file, will try to use the model config instead.") | |
| return {} | |
| commit_hash = extract_commit_hash(resolved_config_file, commit_hash) | |
| with open(resolved_config_file, encoding="utf-8") as reader: | |
| result = json.load(reader) | |
| result["_commit_hash"] = commit_hash | |
| return result | |
| class AutoTokenizer: | |
| r""" | |
| This is a generic tokenizer class that will be instantiated as one of the tokenizer classes of the library when | |
| created with the [`AutoTokenizer.from_pretrained`] class method. | |
| This class cannot be instantiated directly using `__init__()` (throws an error). | |
| """ | |
| def __init__(self): | |
| raise EnvironmentError( | |
| "AutoTokenizer is designed to be instantiated " | |
| "using the `AutoTokenizer.from_pretrained(pretrained_model_name_or_path)` method." | |
| ) | |
| def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs): | |
| r""" | |
| Instantiate one of the tokenizer classes of the library from a pretrained model vocabulary. | |
| The tokenizer class to instantiate is selected based on the `model_type` property of the config object (either | |
| passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by | |
| falling back to using pattern matching on `pretrained_model_name_or_path`: | |
| List options | |
| Params: | |
| pretrained_model_name_or_path (`str` or `os.PathLike`): | |
| Can be either: | |
| - A string, the *model id* of a predefined tokenizer hosted inside a model repo on huggingface.co. | |
| Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a | |
| user or organization name, like `dbmdz/bert-base-german-cased`. | |
| - A path to a *directory* containing vocabulary files required by the tokenizer, for instance saved | |
| using the [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`. | |
| - A path or url to a single saved vocabulary file if and only if the tokenizer only requires a | |
| single vocabulary file (like Bert or XLNet), e.g.: `./my_model_directory/vocab.txt`. (Not | |
| applicable to all derived classes) | |
| inputs (additional positional arguments, *optional*): | |
| Will be passed along to the Tokenizer `__init__()` method. | |
| config ([`PretrainedConfig`], *optional*) | |
| The configuration object used to determine the tokenizer class to instantiate. | |
| cache_dir (`str` or `os.PathLike`, *optional*): | |
| Path to a directory in which a downloaded pretrained model configuration should be cached if the | |
| standard cache should not be used. | |
| force_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to force the (re-)download the model weights and configuration files and override the | |
| cached versions if they exist. | |
| resume_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to delete incompletely received files. Will attempt to resume the download if such a | |
| file exists. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
| revision (`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |
| git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any | |
| identifier allowed by git. | |
| subfolder (`str`, *optional*): | |
| In case the relevant files are located inside a subfolder of the model repo on huggingface.co (e.g. for | |
| facebook/rag-token-base), specify it here. | |
| use_fast (`bool`, *optional*, defaults to `True`): | |
| Use a [fast Rust-based tokenizer](https://huggingface.co/docs/tokenizers/index) if it is supported for | |
| a given model. If a fast tokenizer is not available for a given model, a normal Python-based tokenizer | |
| is returned instead. | |
| tokenizer_type (`str`, *optional*): | |
| Tokenizer type to be loaded. | |
| trust_remote_code (`bool`, *optional*, defaults to `False`): | |
| Whether or not to allow for custom models defined on the Hub in their own modeling files. This option | |
| should only be set to `True` for repositories you trust and in which you have read the code, as it will | |
| execute code present on the Hub on your local machine. | |
| kwargs (additional keyword arguments, *optional*): | |
| Will be passed to the Tokenizer `__init__()` method. Can be used to set special tokens like | |
| `bos_token`, `eos_token`, `unk_token`, `sep_token`, `pad_token`, `cls_token`, `mask_token`, | |
| `additional_special_tokens`. See parameters in the `__init__()` for more details. | |
| Examples: | |
| ```python | |
| >>> from transformers import AutoTokenizer | |
| >>> # Download vocabulary from huggingface.co and cache. | |
| >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
| >>> # Download vocabulary from huggingface.co (user-uploaded) and cache. | |
| >>> tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-german-cased") | |
| >>> # If vocabulary files are in a directory (e.g. tokenizer was saved using *save_pretrained('./test/saved_model/')*) | |
| >>> # tokenizer = AutoTokenizer.from_pretrained("./test/bert_saved_model/") | |
| >>> # Download vocabulary from huggingface.co and define model-specific arguments | |
| >>> tokenizer = AutoTokenizer.from_pretrained("roberta-base", add_prefix_space=True) | |
| ```""" | |
| use_auth_token = kwargs.pop("use_auth_token", None) | |
| if use_auth_token is not None: | |
| warnings.warn( | |
| "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning | |
| ) | |
| if kwargs.get("token", None) is not None: | |
| raise ValueError( | |
| "`token` and `use_auth_token` are both specified. Please set only the argument `token`." | |
| ) | |
| kwargs["token"] = use_auth_token | |
| config = kwargs.pop("config", None) | |
| kwargs["_from_auto"] = True | |
| use_fast = kwargs.pop("use_fast", True) | |
| tokenizer_type = kwargs.pop("tokenizer_type", None) | |
| trust_remote_code = kwargs.pop("trust_remote_code", None) | |
| # First, let's see whether the tokenizer_type is passed so that we can leverage it | |
| if tokenizer_type is not None: | |
| tokenizer_class = None | |
| tokenizer_class_tuple = TOKENIZER_MAPPING_NAMES.get(tokenizer_type, None) | |
| if tokenizer_class_tuple is None: | |
| raise ValueError( | |
| f"Passed `tokenizer_type` {tokenizer_type} does not exist. `tokenizer_type` should be one of " | |
| f"{', '.join(c for c in TOKENIZER_MAPPING_NAMES.keys())}." | |
| ) | |
| tokenizer_class_name, tokenizer_fast_class_name = tokenizer_class_tuple | |
| if use_fast: | |
| if tokenizer_fast_class_name is not None: | |
| tokenizer_class = tokenizer_class_from_name(tokenizer_fast_class_name) | |
| else: | |
| logger.warning( | |
| "`use_fast` is set to `True` but the tokenizer class does not have a fast version. " | |
| " Falling back to the slow version." | |
| ) | |
| if tokenizer_class is None: | |
| tokenizer_class = tokenizer_class_from_name(tokenizer_class_name) | |
| if tokenizer_class is None: | |
| raise ValueError(f"Tokenizer class {tokenizer_class_name} is not currently imported.") | |
| return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) | |
| # Next, let's try to use the tokenizer_config file to get the tokenizer class. | |
| tokenizer_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs) | |
| if "_commit_hash" in tokenizer_config: | |
| kwargs["_commit_hash"] = tokenizer_config["_commit_hash"] | |
| config_tokenizer_class = tokenizer_config.get("tokenizer_class") | |
| tokenizer_auto_map = None | |
| if "auto_map" in tokenizer_config: | |
| if isinstance(tokenizer_config["auto_map"], (tuple, list)): | |
| # Legacy format for dynamic tokenizers | |
| tokenizer_auto_map = tokenizer_config["auto_map"] | |
| else: | |
| tokenizer_auto_map = tokenizer_config["auto_map"].get("AutoTokenizer", None) | |
| # If that did not work, let's try to use the config. | |
| if config_tokenizer_class is None: | |
| if not isinstance(config, PretrainedConfig): | |
| config = AutoConfig.from_pretrained( | |
| pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs | |
| ) | |
| config_tokenizer_class = config.tokenizer_class | |
| if hasattr(config, "auto_map") and "AutoTokenizer" in config.auto_map: | |
| tokenizer_auto_map = config.auto_map["AutoTokenizer"] | |
| has_remote_code = tokenizer_auto_map is not None | |
| has_local_code = config_tokenizer_class is not None or type(config) in TOKENIZER_MAPPING | |
| trust_remote_code = resolve_trust_remote_code( | |
| trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code | |
| ) | |
| if has_remote_code and trust_remote_code: | |
| if use_fast and tokenizer_auto_map[1] is not None: | |
| class_ref = tokenizer_auto_map[1] | |
| else: | |
| class_ref = tokenizer_auto_map[0] | |
| tokenizer_class = get_class_from_dynamic_module(class_ref, pretrained_model_name_or_path, **kwargs) | |
| _ = kwargs.pop("code_revision", None) | |
| if os.path.isdir(pretrained_model_name_or_path): | |
| tokenizer_class.register_for_auto_class() | |
| return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) | |
| elif config_tokenizer_class is not None: | |
| tokenizer_class = None | |
| if use_fast and not config_tokenizer_class.endswith("Fast"): | |
| tokenizer_class_candidate = f"{config_tokenizer_class}Fast" | |
| tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate) | |
| if tokenizer_class is None: | |
| tokenizer_class_candidate = config_tokenizer_class | |
| tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate) | |
| if tokenizer_class is None: | |
| raise ValueError( | |
| f"Tokenizer class {tokenizer_class_candidate} does not exist or is not currently imported." | |
| ) | |
| return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) | |
| # Otherwise we have to be creative. | |
| # if model is an encoder decoder, the encoder tokenizer class is used by default | |
| if isinstance(config, EncoderDecoderConfig): | |
| if type(config.decoder) is not type(config.encoder): # noqa: E721 | |
| logger.warning( | |
| f"The encoder model config class: {config.encoder.__class__} is different from the decoder model " | |
| f"config class: {config.decoder.__class__}. It is not recommended to use the " | |
| "`AutoTokenizer.from_pretrained()` method in this case. Please use the encoder and decoder " | |
| "specific tokenizer classes." | |
| ) | |
| config = config.encoder | |
| model_type = config_class_to_model_type(type(config).__name__) | |
| if model_type is not None: | |
| tokenizer_class_py, tokenizer_class_fast = TOKENIZER_MAPPING[type(config)] | |
| if tokenizer_class_fast and (use_fast or tokenizer_class_py is None): | |
| return tokenizer_class_fast.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) | |
| else: | |
| if tokenizer_class_py is not None: | |
| return tokenizer_class_py.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) | |
| else: | |
| raise ValueError( | |
| "This tokenizer cannot be instantiated. Please make sure you have `sentencepiece` installed " | |
| "in order to use this tokenizer." | |
| ) | |
| raise ValueError( | |
| f"Unrecognized configuration class {config.__class__} to build an AutoTokenizer.\n" | |
| f"Model type should be one of {', '.join(c.__name__ for c in TOKENIZER_MAPPING.keys())}." | |
| ) | |
| def register(config_class, slow_tokenizer_class=None, fast_tokenizer_class=None, exist_ok=False): | |
| """ | |
| Register a new tokenizer in this mapping. | |
| Args: | |
| config_class ([`PretrainedConfig`]): | |
| The configuration corresponding to the model to register. | |
| slow_tokenizer_class ([`PretrainedTokenizer`], *optional*): | |
| The slow tokenizer to register. | |
| fast_tokenizer_class ([`PretrainedTokenizerFast`], *optional*): | |
| The fast tokenizer to register. | |
| """ | |
| if slow_tokenizer_class is None and fast_tokenizer_class is None: | |
| raise ValueError("You need to pass either a `slow_tokenizer_class` or a `fast_tokenizer_class") | |
| if slow_tokenizer_class is not None and issubclass(slow_tokenizer_class, PreTrainedTokenizerFast): | |
| raise ValueError("You passed a fast tokenizer in the `slow_tokenizer_class`.") | |
| if fast_tokenizer_class is not None and issubclass(fast_tokenizer_class, PreTrainedTokenizer): | |
| raise ValueError("You passed a slow tokenizer in the `fast_tokenizer_class`.") | |
| if ( | |
| slow_tokenizer_class is not None | |
| and fast_tokenizer_class is not None | |
| and issubclass(fast_tokenizer_class, PreTrainedTokenizerFast) | |
| and fast_tokenizer_class.slow_tokenizer_class != slow_tokenizer_class | |
| ): | |
| raise ValueError( | |
| "The fast tokenizer class you are passing has a `slow_tokenizer_class` attribute that is not " | |
| "consistent with the slow tokenizer class you passed (fast tokenizer has " | |
| f"{fast_tokenizer_class.slow_tokenizer_class} and you passed {slow_tokenizer_class}. Fix one of those " | |
| "so they match!" | |
| ) | |
| # Avoid resetting a set slow/fast tokenizer if we are passing just the other ones. | |
| if config_class in TOKENIZER_MAPPING._extra_content: | |
| existing_slow, existing_fast = TOKENIZER_MAPPING[config_class] | |
| if slow_tokenizer_class is None: | |
| slow_tokenizer_class = existing_slow | |
| if fast_tokenizer_class is None: | |
| fast_tokenizer_class = existing_fast | |
| TOKENIZER_MAPPING.register(config_class, (slow_tokenizer_class, fast_tokenizer_class), exist_ok=exist_ok) | |