Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ BART model configuration""" | |
| import warnings | |
| from collections import OrderedDict | |
| from typing import Any, Mapping, Optional | |
| from ... import PreTrainedTokenizer | |
| from ...configuration_utils import PretrainedConfig | |
| from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast | |
| from ...onnx.utils import compute_effective_axis_dimension | |
| from ...utils import TensorType, is_torch_available, logging | |
| logger = logging.get_logger(__name__) | |
| BART_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
| "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/config.json", | |
| # See all BART models at https://huggingface.co/models?filter=bart | |
| } | |
| class BartConfig(PretrainedConfig): | |
| r""" | |
| This is the configuration class to store the configuration of a [`BartModel`]. It is used to instantiate a BART | |
| model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
| defaults will yield a similar configuration to that of the BART | |
| [facebook/bart-large](https://huggingface.co/facebook/bart-large) architecture. | |
| Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| documentation from [`PretrainedConfig`] for more information. | |
| Args: | |
| vocab_size (`int`, *optional*, defaults to 50265): | |
| Vocabulary size of the BART model. Defines the number of different tokens that can be represented by the | |
| `inputs_ids` passed when calling [`BartModel`] or [`TFBartModel`]. | |
| d_model (`int`, *optional*, defaults to 1024): | |
| Dimensionality of the layers and the pooler layer. | |
| encoder_layers (`int`, *optional*, defaults to 12): | |
| Number of encoder layers. | |
| decoder_layers (`int`, *optional*, defaults to 12): | |
| Number of decoder layers. | |
| encoder_attention_heads (`int`, *optional*, defaults to 16): | |
| Number of attention heads for each attention layer in the Transformer encoder. | |
| decoder_attention_heads (`int`, *optional*, defaults to 16): | |
| Number of attention heads for each attention layer in the Transformer decoder. | |
| decoder_ffn_dim (`int`, *optional*, defaults to 4096): | |
| Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. | |
| encoder_ffn_dim (`int`, *optional*, defaults to 4096): | |
| Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. | |
| activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): | |
| The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
| `"relu"`, `"silu"` and `"gelu_new"` are supported. | |
| dropout (`float`, *optional*, defaults to 0.1): | |
| The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
| attention_dropout (`float`, *optional*, defaults to 0.0): | |
| The dropout ratio for the attention probabilities. | |
| activation_dropout (`float`, *optional*, defaults to 0.0): | |
| The dropout ratio for activations inside the fully connected layer. | |
| classifier_dropout (`float`, *optional*, defaults to 0.0): | |
| The dropout ratio for classifier. | |
| max_position_embeddings (`int`, *optional*, defaults to 1024): | |
| The maximum sequence length that this model might ever be used with. Typically set this to something large | |
| just in case (e.g., 512 or 1024 or 2048). | |
| init_std (`float`, *optional*, defaults to 0.02): | |
| The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
| encoder_layerdrop (`float`, *optional*, defaults to 0.0): | |
| The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) | |
| for more details. | |
| decoder_layerdrop (`float`, *optional*, defaults to 0.0): | |
| The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) | |
| for more details. | |
| scale_embedding (`bool`, *optional*, defaults to `False`): | |
| Scale embeddings by diving by sqrt(d_model). | |
| use_cache (`bool`, *optional*, defaults to `True`): | |
| Whether or not the model should return the last key/values attentions (not used by all models). | |
| num_labels (`int`, *optional*, defaults to 3): | |
| The number of labels to use in [`BartForSequenceClassification`]. | |
| forced_eos_token_id (`int`, *optional*, defaults to 2): | |
| The id of the token to force as the last generated token when `max_length` is reached. Usually set to | |
| `eos_token_id`. | |
| Example: | |
| ```python | |
| >>> from transformers import BartConfig, BartModel | |
| >>> # Initializing a BART facebook/bart-large style configuration | |
| >>> configuration = BartConfig() | |
| >>> # Initializing a model (with random weights) from the facebook/bart-large style configuration | |
| >>> model = BartModel(configuration) | |
| >>> # Accessing the model configuration | |
| >>> configuration = model.config | |
| ```""" | |
| model_type = "bart" | |
| keys_to_ignore_at_inference = ["past_key_values"] | |
| attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} | |
| def __init__( | |
| self, | |
| vocab_size=50265, | |
| max_position_embeddings=1024, | |
| encoder_layers=12, | |
| encoder_ffn_dim=4096, | |
| encoder_attention_heads=16, | |
| decoder_layers=12, | |
| decoder_ffn_dim=4096, | |
| decoder_attention_heads=16, | |
| encoder_layerdrop=0.0, | |
| decoder_layerdrop=0.0, | |
| activation_function="gelu", | |
| d_model=1024, | |
| dropout=0.1, | |
| attention_dropout=0.0, | |
| activation_dropout=0.0, | |
| init_std=0.02, | |
| classifier_dropout=0.0, | |
| scale_embedding=False, | |
| use_cache=True, | |
| num_labels=3, | |
| pad_token_id=1, | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| is_encoder_decoder=True, | |
| decoder_start_token_id=2, | |
| forced_eos_token_id=2, | |
| **kwargs, | |
| ): | |
| self.vocab_size = vocab_size | |
| self.max_position_embeddings = max_position_embeddings | |
| self.d_model = d_model | |
| self.encoder_ffn_dim = encoder_ffn_dim | |
| self.encoder_layers = encoder_layers | |
| self.encoder_attention_heads = encoder_attention_heads | |
| self.decoder_ffn_dim = decoder_ffn_dim | |
| self.decoder_layers = decoder_layers | |
| self.decoder_attention_heads = decoder_attention_heads | |
| self.dropout = dropout | |
| self.attention_dropout = attention_dropout | |
| self.activation_dropout = activation_dropout | |
| self.activation_function = activation_function | |
| self.init_std = init_std | |
| self.encoder_layerdrop = encoder_layerdrop | |
| self.decoder_layerdrop = decoder_layerdrop | |
| self.classifier_dropout = classifier_dropout | |
| self.use_cache = use_cache | |
| self.num_hidden_layers = encoder_layers | |
| self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True | |
| super().__init__( | |
| num_labels=num_labels, | |
| pad_token_id=pad_token_id, | |
| bos_token_id=bos_token_id, | |
| eos_token_id=eos_token_id, | |
| is_encoder_decoder=is_encoder_decoder, | |
| decoder_start_token_id=decoder_start_token_id, | |
| forced_eos_token_id=forced_eos_token_id, | |
| **kwargs, | |
| ) | |
| # ensure backward compatibility for BART CNN models | |
| if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False): | |
| self.forced_bos_token_id = self.bos_token_id | |
| warnings.warn( | |
| f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " | |
| "The config can simply be saved and uploaded again to be fixed." | |
| ) | |
| class BartOnnxConfig(OnnxSeq2SeqConfigWithPast): | |
| def inputs(self) -> Mapping[str, Mapping[int, str]]: | |
| if self.task in ["default", "seq2seq-lm"]: | |
| common_inputs = OrderedDict( | |
| [ | |
| ("input_ids", {0: "batch", 1: "encoder_sequence"}), | |
| ("attention_mask", {0: "batch", 1: "encoder_sequence"}), | |
| ] | |
| ) | |
| if self.use_past: | |
| common_inputs["decoder_input_ids"] = {0: "batch"} | |
| common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"} | |
| else: | |
| common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"} | |
| common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"} | |
| if self.use_past: | |
| self.fill_with_past_key_values_(common_inputs, direction="inputs") | |
| elif self.task == "causal-lm": | |
| # TODO: figure this case out. | |
| common_inputs = OrderedDict( | |
| [ | |
| ("input_ids", {0: "batch", 1: "encoder_sequence"}), | |
| ("attention_mask", {0: "batch", 1: "encoder_sequence"}), | |
| ] | |
| ) | |
| if self.use_past: | |
| num_encoder_layers, _ = self.num_layers | |
| for i in range(num_encoder_layers): | |
| common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"} | |
| common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"} | |
| else: | |
| common_inputs = OrderedDict( | |
| [ | |
| ("input_ids", {0: "batch", 1: "encoder_sequence"}), | |
| ("attention_mask", {0: "batch", 1: "encoder_sequence"}), | |
| ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), | |
| ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), | |
| ] | |
| ) | |
| return common_inputs | |
| def outputs(self) -> Mapping[str, Mapping[int, str]]: | |
| if self.task in ["default", "seq2seq-lm"]: | |
| common_outputs = super().outputs | |
| else: | |
| common_outputs = super(OnnxConfigWithPast, self).outputs | |
| if self.use_past: | |
| num_encoder_layers, _ = self.num_layers | |
| for i in range(num_encoder_layers): | |
| common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"} | |
| common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"} | |
| return common_outputs | |
| def _generate_dummy_inputs_for_default_and_seq2seq_lm( | |
| self, | |
| tokenizer: PreTrainedTokenizer, | |
| batch_size: int = -1, | |
| seq_length: int = -1, | |
| is_pair: bool = False, | |
| framework: Optional[TensorType] = None, | |
| ) -> Mapping[str, Any]: | |
| encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( | |
| tokenizer, batch_size, seq_length, is_pair, framework | |
| ) | |
| # Generate decoder inputs | |
| decoder_seq_length = seq_length if not self.use_past else 1 | |
| decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( | |
| tokenizer, batch_size, decoder_seq_length, is_pair, framework | |
| ) | |
| decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} | |
| common_inputs = dict(**encoder_inputs, **decoder_inputs) | |
| if self.use_past: | |
| if not is_torch_available(): | |
| raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") | |
| else: | |
| import torch | |
| batch, encoder_seq_length = common_inputs["input_ids"].shape | |
| decoder_seq_length = common_inputs["decoder_input_ids"].shape[1] | |
| num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads | |
| encoder_shape = ( | |
| batch, | |
| num_encoder_attention_heads, | |
| encoder_seq_length, | |
| self._config.hidden_size // num_encoder_attention_heads, | |
| ) | |
| decoder_past_length = decoder_seq_length + 3 | |
| decoder_shape = ( | |
| batch, | |
| num_decoder_attention_heads, | |
| decoder_past_length, | |
| self._config.hidden_size // num_decoder_attention_heads, | |
| ) | |
| common_inputs["decoder_attention_mask"] = torch.cat( | |
| [common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1 | |
| ) | |
| common_inputs["past_key_values"] = [] | |
| # If the number of encoder and decoder layers are present in the model configuration, both are considered | |
| num_encoder_layers, num_decoder_layers = self.num_layers | |
| min_num_layers = min(num_encoder_layers, num_decoder_layers) | |
| max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers | |
| remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" | |
| for _ in range(min_num_layers): | |
| common_inputs["past_key_values"].append( | |
| ( | |
| torch.zeros(decoder_shape), | |
| torch.zeros(decoder_shape), | |
| torch.zeros(encoder_shape), | |
| torch.zeros(encoder_shape), | |
| ) | |
| ) | |
| # TODO: test this. | |
| shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape | |
| for _ in range(min_num_layers, max_num_layers): | |
| common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape))) | |
| return common_inputs | |
| def _generate_dummy_inputs_for_causal_lm( | |
| self, | |
| tokenizer: PreTrainedTokenizer, | |
| batch_size: int = -1, | |
| seq_length: int = -1, | |
| is_pair: bool = False, | |
| framework: Optional[TensorType] = None, | |
| ) -> Mapping[str, Any]: | |
| common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( | |
| tokenizer, batch_size, seq_length, is_pair, framework | |
| ) | |
| if self.use_past: | |
| if not is_torch_available(): | |
| raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") | |
| else: | |
| import torch | |
| batch, seqlen = common_inputs["input_ids"].shape | |
| # Not using the same length for past_key_values | |
| past_key_values_length = seqlen + 2 | |
| num_encoder_layers, _ = self.num_layers | |
| num_encoder_attention_heads, _ = self.num_attention_heads | |
| past_shape = ( | |
| batch, | |
| num_encoder_attention_heads, | |
| past_key_values_length, | |
| self._config.hidden_size // num_encoder_attention_heads, | |
| ) | |
| mask_dtype = common_inputs["attention_mask"].dtype | |
| common_inputs["attention_mask"] = torch.cat( | |
| [common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1 | |
| ) | |
| common_inputs["past_key_values"] = [ | |
| (torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_encoder_layers) | |
| ] | |
| return common_inputs | |
| def _generate_dummy_inputs_for_sequence_classification_and_question_answering( | |
| self, | |
| tokenizer: PreTrainedTokenizer, | |
| batch_size: int = -1, | |
| seq_length: int = -1, | |
| is_pair: bool = False, | |
| framework: Optional[TensorType] = None, | |
| ) -> Mapping[str, Any]: | |
| # Copied from OnnxConfig.generate_dummy_inputs | |
| # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. | |
| # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX | |
| batch_size = compute_effective_axis_dimension( | |
| batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 | |
| ) | |
| # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX | |
| token_to_add = tokenizer.num_special_tokens_to_add(is_pair) | |
| seq_length = compute_effective_axis_dimension( | |
| seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add | |
| ) | |
| # Generate dummy inputs according to compute batch and sequence | |
| dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size | |
| common_inputs = dict(tokenizer(dummy_input, return_tensors=framework)) | |
| return common_inputs | |
| def generate_dummy_inputs( | |
| self, | |
| tokenizer: PreTrainedTokenizer, | |
| batch_size: int = -1, | |
| seq_length: int = -1, | |
| is_pair: bool = False, | |
| framework: Optional[TensorType] = None, | |
| ) -> Mapping[str, Any]: | |
| if self.task in ["default", "seq2seq-lm"]: | |
| common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm( | |
| tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework | |
| ) | |
| elif self.task == "causal-lm": | |
| common_inputs = self._generate_dummy_inputs_for_causal_lm( | |
| tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework | |
| ) | |
| else: | |
| common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( | |
| tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework | |
| ) | |
| return common_inputs | |
| def _flatten_past_key_values_(self, flattened_output, name, idx, t): | |
| if self.task in ["default", "seq2seq-lm"]: | |
| flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t) | |
| else: | |
| flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_( | |
| flattened_output, name, idx, t | |
| ) | |