Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright (c) 2020, VinAI Research and the HuggingFace Inc. team. | |
| # Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Tokenization classes for BERTweet""" | |
| import html | |
| import os | |
| import re | |
| from shutil import copyfile | |
| from typing import List, Optional, Tuple | |
| import regex | |
| from ...tokenization_utils import PreTrainedTokenizer | |
| from ...utils import logging | |
| logger = logging.get_logger(__name__) | |
| VOCAB_FILES_NAMES = { | |
| "vocab_file": "vocab.txt", | |
| "merges_file": "bpe.codes", | |
| } | |
| PRETRAINED_VOCAB_FILES_MAP = { | |
| "vocab_file": { | |
| "vinai/bertweet-base": "https://huggingface.co/vinai/bertweet-base/resolve/main/vocab.txt", | |
| }, | |
| "merges_file": { | |
| "vinai/bertweet-base": "https://huggingface.co/vinai/bertweet-base/resolve/main/bpe.codes", | |
| }, | |
| } | |
| PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { | |
| "vinai/bertweet-base": 128, | |
| } | |
| def get_pairs(word): | |
| """ | |
| Return set of symbol pairs in a word. | |
| Word is represented as tuple of symbols (symbols being variable-length strings). | |
| """ | |
| pairs = set() | |
| prev_char = word[0] | |
| for char in word[1:]: | |
| pairs.add((prev_char, char)) | |
| prev_char = char | |
| pairs = set(pairs) | |
| return pairs | |
| class BertweetTokenizer(PreTrainedTokenizer): | |
| """ | |
| Constructs a BERTweet tokenizer, using Byte-Pair-Encoding. | |
| This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to | |
| this superclass for more information regarding those methods. | |
| Args: | |
| vocab_file (`str`): | |
| Path to the vocabulary file. | |
| merges_file (`str`): | |
| Path to the merges file. | |
| normalization (`bool`, *optional*, defaults to `False`): | |
| Whether or not to apply a normalization preprocess. | |
| bos_token (`str`, *optional*, defaults to `"<s>"`): | |
| The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. | |
| <Tip> | |
| When building a sequence using special tokens, this is not the token that is used for the beginning of | |
| sequence. The token used is the `cls_token`. | |
| </Tip> | |
| eos_token (`str`, *optional*, defaults to `"</s>"`): | |
| The end of sequence token. | |
| <Tip> | |
| When building a sequence using special tokens, this is not the token that is used for the end of sequence. | |
| The token used is the `sep_token`. | |
| </Tip> | |
| sep_token (`str`, *optional*, defaults to `"</s>"`): | |
| The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for | |
| sequence classification or for a text and a question for question answering. It is also used as the last | |
| token of a sequence built with special tokens. | |
| cls_token (`str`, *optional*, defaults to `"<s>"`): | |
| The classifier token which is used when doing sequence classification (classification of the whole sequence | |
| instead of per-token classification). It is the first token of the sequence when built with special tokens. | |
| unk_token (`str`, *optional*, defaults to `"<unk>"`): | |
| The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | |
| token instead. | |
| pad_token (`str`, *optional*, defaults to `"<pad>"`): | |
| The token used for padding, for example when batching sequences of different lengths. | |
| mask_token (`str`, *optional*, defaults to `"<mask>"`): | |
| The token used for masking values. This is the token used when training this model with masked language | |
| modeling. This is the token which the model will try to predict. | |
| """ | |
| vocab_files_names = VOCAB_FILES_NAMES | |
| pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | |
| max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | |
| def __init__( | |
| self, | |
| vocab_file, | |
| merges_file, | |
| normalization=False, | |
| bos_token="<s>", | |
| eos_token="</s>", | |
| sep_token="</s>", | |
| cls_token="<s>", | |
| unk_token="<unk>", | |
| pad_token="<pad>", | |
| mask_token="<mask>", | |
| **kwargs, | |
| ): | |
| try: | |
| from emoji import demojize | |
| self.demojizer = demojize | |
| except ImportError: | |
| logger.warning( | |
| "emoji is not installed, thus not converting emoticons or emojis into text. Install emoji: pip3" | |
| " install emoji==0.6.0" | |
| ) | |
| self.demojizer = None | |
| self.vocab_file = vocab_file | |
| self.merges_file = merges_file | |
| self.encoder = {} | |
| self.encoder[bos_token] = 0 | |
| self.encoder[pad_token] = 1 | |
| self.encoder[eos_token] = 2 | |
| self.encoder[unk_token] = 3 | |
| self.add_from_file(vocab_file) | |
| self.decoder = {v: k for k, v in self.encoder.items()} | |
| with open(merges_file, encoding="utf-8") as merges_handle: | |
| merges = merges_handle.read().split("\n")[:-1] | |
| merges = [tuple(merge.split()[:-1]) for merge in merges] | |
| self.bpe_ranks = dict(zip(merges, range(len(merges)))) | |
| self.cache = {} | |
| self.normalization = normalization | |
| self.tweetPreprocessor = TweetTokenizer() | |
| self.special_puncts = {"’": "'", "…": "..."} | |
| super().__init__( | |
| normalization=normalization, | |
| bos_token=bos_token, | |
| eos_token=eos_token, | |
| sep_token=sep_token, | |
| cls_token=cls_token, | |
| unk_token=unk_token, | |
| pad_token=pad_token, | |
| mask_token=mask_token, | |
| **kwargs, | |
| ) | |
| def build_inputs_with_special_tokens( | |
| self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
| ) -> List[int]: | |
| """ | |
| Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | |
| adding special tokens. A BERTweet sequence has the following format: | |
| - single sequence: `<s> X </s>` | |
| - pair of sequences: `<s> A </s></s> B </s>` | |
| Args: | |
| token_ids_0 (`List[int]`): | |
| List of IDs to which the special tokens will be added. | |
| token_ids_1 (`List[int]`, *optional*): | |
| Optional second list of IDs for sequence pairs. | |
| Returns: | |
| `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. | |
| """ | |
| if token_ids_1 is None: | |
| return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] | |
| cls = [self.cls_token_id] | |
| sep = [self.sep_token_id] | |
| return cls + token_ids_0 + sep + sep + token_ids_1 + sep | |
| def get_special_tokens_mask( | |
| self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False | |
| ) -> List[int]: | |
| """ | |
| Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | |
| special tokens using the tokenizer `prepare_for_model` method. | |
| Args: | |
| token_ids_0 (`List[int]`): | |
| List of IDs. | |
| token_ids_1 (`List[int]`, *optional*): | |
| Optional second list of IDs for sequence pairs. | |
| already_has_special_tokens (`bool`, *optional*, defaults to `False`): | |
| Whether or not the token list is already formatted with special tokens for the model. | |
| Returns: | |
| `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | |
| """ | |
| if already_has_special_tokens: | |
| return super().get_special_tokens_mask( | |
| token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True | |
| ) | |
| if token_ids_1 is None: | |
| return [1] + ([0] * len(token_ids_0)) + [1] | |
| return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] | |
| def create_token_type_ids_from_sequences( | |
| self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
| ) -> List[int]: | |
| """ | |
| Create a mask from the two sequences passed to be used in a sequence-pair classification task. BERTweet does | |
| not make use of token type ids, therefore a list of zeros is returned. | |
| Args: | |
| token_ids_0 (`List[int]`): | |
| List of IDs. | |
| token_ids_1 (`List[int]`, *optional*): | |
| Optional second list of IDs for sequence pairs. | |
| Returns: | |
| `List[int]`: List of zeros. | |
| """ | |
| sep = [self.sep_token_id] | |
| cls = [self.cls_token_id] | |
| if token_ids_1 is None: | |
| return len(cls + token_ids_0 + sep) * [0] | |
| return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] | |
| def vocab_size(self): | |
| return len(self.encoder) | |
| def get_vocab(self): | |
| return dict(self.encoder, **self.added_tokens_encoder) | |
| def bpe(self, token): | |
| if token in self.cache: | |
| return self.cache[token] | |
| word = tuple(token) | |
| word = tuple(list(word[:-1]) + [word[-1] + "</w>"]) | |
| pairs = get_pairs(word) | |
| if not pairs: | |
| return token | |
| while True: | |
| bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) | |
| if bigram not in self.bpe_ranks: | |
| break | |
| first, second = bigram | |
| new_word = [] | |
| i = 0 | |
| while i < len(word): | |
| try: | |
| j = word.index(first, i) | |
| except ValueError: | |
| new_word.extend(word[i:]) | |
| break | |
| else: | |
| new_word.extend(word[i:j]) | |
| i = j | |
| if word[i] == first and i < len(word) - 1 and word[i + 1] == second: | |
| new_word.append(first + second) | |
| i += 2 | |
| else: | |
| new_word.append(word[i]) | |
| i += 1 | |
| new_word = tuple(new_word) | |
| word = new_word | |
| if len(word) == 1: | |
| break | |
| else: | |
| pairs = get_pairs(word) | |
| word = "@@ ".join(word) | |
| word = word[:-4] | |
| self.cache[token] = word | |
| return word | |
| def _tokenize(self, text): | |
| """Tokenize a string.""" | |
| if self.normalization: # Perform Tweet normalization before performing BPE | |
| text = self.normalizeTweet(text) | |
| split_tokens = [] | |
| words = re.findall(r"\S+\n?", text) | |
| for token in words: | |
| split_tokens.extend(list(self.bpe(token).split(" "))) | |
| return split_tokens | |
| def normalizeTweet(self, tweet): | |
| """ | |
| Normalize a raw Tweet | |
| """ | |
| for punct in self.special_puncts: | |
| tweet = tweet.replace(punct, self.special_puncts[punct]) | |
| tokens = self.tweetPreprocessor.tokenize(tweet) | |
| normTweet = " ".join([self.normalizeToken(token) for token in tokens]) | |
| normTweet = ( | |
| normTweet.replace("cannot ", "can not ") | |
| .replace("n't ", " n't ") | |
| .replace("n 't ", " n't ") | |
| .replace("ca n't", "can't") | |
| .replace("ai n't", "ain't") | |
| ) | |
| normTweet = ( | |
| normTweet.replace("'m ", " 'm ") | |
| .replace("'re ", " 're ") | |
| .replace("'s ", " 's ") | |
| .replace("'ll ", " 'll ") | |
| .replace("'d ", " 'd ") | |
| .replace("'ve ", " 've ") | |
| ) | |
| normTweet = ( | |
| normTweet.replace(" p . m .", " p.m.") | |
| .replace(" p . m ", " p.m ") | |
| .replace(" a . m .", " a.m.") | |
| .replace(" a . m ", " a.m ") | |
| ) | |
| return " ".join(normTweet.split()) | |
| def normalizeToken(self, token): | |
| """ | |
| Normalize tokens in a Tweet | |
| """ | |
| lowercased_token = token.lower() | |
| if token.startswith("@"): | |
| return "@USER" | |
| elif lowercased_token.startswith("http") or lowercased_token.startswith("www"): | |
| return "HTTPURL" | |
| elif len(token) == 1: | |
| if token in self.special_puncts: | |
| return self.special_puncts[token] | |
| if self.demojizer is not None: | |
| return self.demojizer(token) | |
| else: | |
| return token | |
| else: | |
| return token | |
| def _convert_token_to_id(self, token): | |
| """Converts a token (str) in an id using the vocab.""" | |
| return self.encoder.get(token, self.encoder.get(self.unk_token)) | |
| def _convert_id_to_token(self, index): | |
| """Converts an index (integer) in a token (str) using the vocab.""" | |
| return self.decoder.get(index, self.unk_token) | |
| def convert_tokens_to_string(self, tokens): | |
| """Converts a sequence of tokens (string) in a single string.""" | |
| out_string = " ".join(tokens).replace("@@ ", "").strip() | |
| return out_string | |
| def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
| if not os.path.isdir(save_directory): | |
| logger.error(f"Vocabulary path ({save_directory}) should be a directory") | |
| return | |
| out_vocab_file = os.path.join( | |
| save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] | |
| ) | |
| out_merge_file = os.path.join( | |
| save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] | |
| ) | |
| if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): | |
| copyfile(self.vocab_file, out_vocab_file) | |
| elif not os.path.isfile(self.vocab_file): | |
| with open(out_vocab_file, "wb") as fi: | |
| content_spiece_model = self.sp_model.serialized_model_proto() | |
| fi.write(content_spiece_model) | |
| if os.path.abspath(self.merges_file) != os.path.abspath(out_merge_file): | |
| copyfile(self.merges_file, out_merge_file) | |
| return out_vocab_file, out_merge_file | |
| # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): | |
| # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) | |
| # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) | |
| # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) | |
| # return ''.join(tokens_generated_so_far) | |
| def add_from_file(self, f): | |
| """ | |
| Loads a pre-existing dictionary from a text file and adds its symbols to this instance. | |
| """ | |
| if isinstance(f, str): | |
| try: | |
| with open(f, "r", encoding="utf-8") as fd: | |
| self.add_from_file(fd) | |
| except FileNotFoundError as fnfe: | |
| raise fnfe | |
| except UnicodeError: | |
| raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset") | |
| return | |
| lines = f.readlines() | |
| for lineTmp in lines: | |
| line = lineTmp.strip() | |
| idx = line.rfind(" ") | |
| if idx == -1: | |
| raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'") | |
| word = line[:idx] | |
| self.encoder[word] = len(self.encoder) | |
| # Natural Language Toolkit: Twitter Tokenizer | |
| # | |
| # Copyright (C) 2001-2020 NLTK Project | |
| # Author: Christopher Potts <cgpotts@stanford.edu> | |
| # Ewan Klein <ewan@inf.ed.ac.uk> (modifications) | |
| # Pierpaolo Pantone <> (modifications) | |
| # URL: http://nltk.org/ | |
| # For license information, see LICENSE.TXT | |
| # | |
| """ | |
| Twitter-aware tokenizer, designed to be flexible and easy to adapt to new domains and tasks. The basic logic is this: | |
| 1. The tuple regex_strings defines a list of regular expression strings. | |
| 2. The regex_strings strings are put, in order, into a compiled regular expression object called word_re. | |
| 3. The tokenization is done by word_re.findall(s), where s is the user-supplied string, inside the tokenize() method of | |
| the class Tokenizer. | |
| 4. When instantiating Tokenizer objects, there is a single option: preserve_case. By default, it is set to True. If it | |
| is set to False, then the tokenizer will lowercase everything except for emoticons. | |
| """ | |
| ###################################################################### | |
| # | |
| # import regex # https://github.com/nltk/nltk/issues/2409 | |
| # import html | |
| # | |
| ###################################################################### | |
| # The following strings are components in the regular expression | |
| # that is used for tokenizing. It's important that phone_number | |
| # appears first in the final regex (since it can contain whitespace). | |
| # It also could matter that tags comes after emoticons, due to the | |
| # possibility of having text like | |
| # | |
| # <:| and some text >:) | |
| # | |
| # Most importantly, the final element should always be last, since it | |
| # does a last ditch whitespace-based tokenization of whatever is left. | |
| # ToDo: Update with http://en.wikipedia.org/wiki/List_of_emoticons ? | |
| # This particular element is used in a couple ways, so we define it | |
| # with a name: | |
| # docstyle-ignore | |
| EMOTICONS = r""" | |
| (?: | |
| [<>]? | |
| [:;=8] # eyes | |
| [\-o\*\']? # optional nose | |
| [\)\]\(\[dDpP/\:\}\{@\|\\] # mouth | |
| | | |
| [\)\]\(\[dDpP/\:\}\{@\|\\] # mouth | |
| [\-o\*\']? # optional nose | |
| [:;=8] # eyes | |
| [<>]? | |
| | | |
| <3 # heart | |
| )""" | |
| # URL pattern due to John Gruber, modified by Tom Winzig. See | |
| # https://gist.github.com/winzig/8894715 | |
| # docstyle-ignore | |
| URLS = r""" # Capture 1: entire matched URL | |
| (?: | |
| https?: # URL protocol and colon | |
| (?: | |
| /{1,3} # 1-3 slashes | |
| | # or | |
| [a-z0-9%] # Single letter or digit or '%' | |
| # (Trying not to match e.g. "URI::Escape") | |
| ) | |
| | # or | |
| # looks like domain name followed by a slash: | |
| [a-z0-9.\-]+[.] | |
| (?:[a-z]{2,13}) | |
| / | |
| ) | |
| (?: # One or more: | |
| [^\s()<>{}\[\]]+ # Run of non-space, non-()<>{}[] | |
| | # or | |
| \([^\s()]*?\([^\s()]+\)[^\s()]*?\) # balanced parens, one level deep: (...(...)...) | |
| | | |
| \([^\s]+?\) # balanced parens, non-recursive: (...) | |
| )+ | |
| (?: # End with: | |
| \([^\s()]*?\([^\s()]+\)[^\s()]*?\) # balanced parens, one level deep: (...(...)...) | |
| | | |
| \([^\s]+?\) # balanced parens, non-recursive: (...) | |
| | # or | |
| [^\s`!()\[\]{};:'".,<>?«»“”‘’] # not a space or one of these punct chars | |
| ) | |
| | # OR, the following to match naked domains: | |
| (?: | |
| (?<!@) # not preceded by a @, avoid matching foo@_gmail.com_ | |
| [a-z0-9]+ | |
| (?:[.\-][a-z0-9]+)* | |
| [.] | |
| (?:[a-z]{2,13}) | |
| \b | |
| /? | |
| (?!@) # not succeeded by a @, | |
| # avoid matching "foo.na" in "foo.na@example.com" | |
| ) | |
| """ | |
| # docstyle-ignore | |
| # The components of the tokenizer: | |
| REGEXPS = ( | |
| URLS, | |
| # Phone numbers: | |
| r""" | |
| (?: | |
| (?: # (international) | |
| \+?[01] | |
| [ *\-.\)]* | |
| )? | |
| (?: # (area code) | |
| [\(]? | |
| \d{3} | |
| [ *\-.\)]* | |
| )? | |
| \d{3} # exchange | |
| [ *\-.\)]* | |
| \d{4} # base | |
| )""", | |
| # ASCII Emoticons | |
| EMOTICONS, | |
| # HTML tags: | |
| r"""<[^>\s]+>""", | |
| # ASCII Arrows | |
| r"""[\-]+>|<[\-]+""", | |
| # Twitter username: | |
| r"""(?:@[\w_]+)""", | |
| # Twitter hashtags: | |
| r"""(?:\#+[\w_]+[\w\'_\-]*[\w_]+)""", | |
| # email addresses | |
| r"""[\w.+-]+@[\w-]+\.(?:[\w-]\.?)+[\w-]""", | |
| # docstyle-ignore | |
| # Remaining word types: | |
| r""" | |
| (?:[^\W\d_](?:[^\W\d_]|['\-_])+[^\W\d_]) # Words with apostrophes or dashes. | |
| | | |
| (?:[+\-]?\d+[,/.:-]\d+[+\-]?) # Numbers, including fractions, decimals. | |
| | | |
| (?:[\w_]+) # Words without apostrophes or dashes. | |
| | | |
| (?:\.(?:\s*\.){1,}) # Ellipsis dots. | |
| | | |
| (?:\S) # Everything else that isn't whitespace. | |
| """, | |
| ) | |
| ###################################################################### | |
| # This is the core tokenizing regex: | |
| WORD_RE = regex.compile(r"""(%s)""" % "|".join(REGEXPS), regex.VERBOSE | regex.I | regex.UNICODE) | |
| # WORD_RE performs poorly on these patterns: | |
| HANG_RE = regex.compile(r"([^a-zA-Z0-9])\1{3,}") | |
| # The emoticon string gets its own regex so that we can preserve case for | |
| # them as needed: | |
| EMOTICON_RE = regex.compile(EMOTICONS, regex.VERBOSE | regex.I | regex.UNICODE) | |
| # These are for regularizing HTML entities to Unicode: | |
| ENT_RE = regex.compile(r"&(#?(x?))([^&;\s]+);") | |
| ###################################################################### | |
| # Functions for converting html entities | |
| ###################################################################### | |
| def _str_to_unicode(text, encoding=None, errors="strict"): | |
| if encoding is None: | |
| encoding = "utf-8" | |
| if isinstance(text, bytes): | |
| return text.decode(encoding, errors) | |
| return text | |
| def _replace_html_entities(text, keep=(), remove_illegal=True, encoding="utf-8"): | |
| """ | |
| Remove entities from text by converting them to their corresponding unicode character. | |
| Args: | |
| text: | |
| A unicode string or a byte string encoded in the given *encoding* (which defaults to 'utf-8'). | |
| keep (list): | |
| List of entity names which should not be replaced. This supports both numeric entities (`&#nnnn;` and | |
| `&#hhhh;`) and named entities (such as ` ` or `>`). | |
| remove_illegal (bool): | |
| If `True`, entities that can't be converted are removed. Otherwise, entities that can't be converted are | |
| kept "as is". | |
| Returns: A unicode string with the entities removed. | |
| See https://github.com/scrapy/w3lib/blob/master/w3lib/html.py | |
| Examples: | |
| ```python | |
| >>> from nltk.tokenize.casual import _replace_html_entities | |
| >>> _replace_html_entities(b"Price: £100") | |
| 'Price: \\xa3100' | |
| >>> print(_replace_html_entities(b"Price: £100")) | |
| Price: £100 | |
| ```""" | |
| def _convert_entity(match): | |
| entity_body = match.group(3) | |
| if match.group(1): | |
| try: | |
| if match.group(2): | |
| number = int(entity_body, 16) | |
| else: | |
| number = int(entity_body, 10) | |
| # Numeric character references in the 80-9F range are typically | |
| # interpreted by browsers as representing the characters mapped | |
| # to bytes 80-9F in the Windows-1252 encoding. For more info | |
| # see: https://en.wikipedia.org/wiki/ISO/IEC_8859-1#Similar_character_sets | |
| if 0x80 <= number <= 0x9F: | |
| return bytes((number,)).decode("cp1252") | |
| except ValueError: | |
| number = None | |
| else: | |
| if entity_body in keep: | |
| return match.group(0) | |
| else: | |
| number = html.entities.name2codepoint.get(entity_body) | |
| if number is not None: | |
| try: | |
| return chr(number) | |
| except (ValueError, OverflowError): | |
| pass | |
| return "" if remove_illegal else match.group(0) | |
| return ENT_RE.sub(_convert_entity, _str_to_unicode(text, encoding)) | |
| ###################################################################### | |
| class TweetTokenizer: | |
| r""" | |
| Examples: | |
| ```python | |
| >>> # Tokenizer for tweets. | |
| >>> from nltk.tokenize import TweetTokenizer | |
| >>> tknzr = TweetTokenizer() | |
| >>> s0 = "This is a cooool #dummysmiley: :-) :-P <3 and some arrows < > -> <--" | |
| >>> tknzr.tokenize(s0) | |
| ['This', 'is', 'a', 'cooool', '#dummysmiley', ':', ':-)', ':-P', '<3', 'and', 'some', 'arrows', '<', '>', '->', '<--'] | |
| >>> # Examples using *strip_handles* and *reduce_len parameters*: | |
| >>> tknzr = TweetTokenizer(strip_handles=True, reduce_len=True) | |
| >>> s1 = "@remy: This is waaaaayyyy too much for you!!!!!!" | |
| >>> tknzr.tokenize(s1) | |
| [':', 'This', 'is', 'waaayyy', 'too', 'much', 'for', 'you', '!', '!', '!'] | |
| ```""" | |
| def __init__(self, preserve_case=True, reduce_len=False, strip_handles=False): | |
| self.preserve_case = preserve_case | |
| self.reduce_len = reduce_len | |
| self.strip_handles = strip_handles | |
| def tokenize(self, text): | |
| """ | |
| Args: | |
| text: str | |
| Returns: list(str) A tokenized list of strings; concatenating this list returns the original string if | |
| `preserve_case=False` | |
| """ | |
| # Fix HTML character entities: | |
| text = _replace_html_entities(text) | |
| # Remove username handles | |
| if self.strip_handles: | |
| text = remove_handles(text) | |
| # Normalize word lengthening | |
| if self.reduce_len: | |
| text = reduce_lengthening(text) | |
| # Shorten problematic sequences of characters | |
| safe_text = HANG_RE.sub(r"\1\1\1", text) | |
| # Tokenize: | |
| words = WORD_RE.findall(safe_text) | |
| # Possibly alter the case, but avoid changing emoticons like :D into :d: | |
| if not self.preserve_case: | |
| words = [x if EMOTICON_RE.search(x) else x.lower() for x in words] | |
| return words | |
| ###################################################################### | |
| # Normalization Functions | |
| ###################################################################### | |
| def reduce_lengthening(text): | |
| """ | |
| Replace repeated character sequences of length 3 or greater with sequences of length 3. | |
| """ | |
| pattern = regex.compile(r"(.)\1{2,}") | |
| return pattern.sub(r"\1\1\1", text) | |
| def remove_handles(text): | |
| """ | |
| Remove Twitter username handles from text. | |
| """ | |
| pattern = regex.compile( | |
| r"(?<![A-Za-z0-9_!@#\$%&*])@(([A-Za-z0-9_]){20}(?!@))|(?<![A-Za-z0-9_!@#\$%&*])@(([A-Za-z0-9_]){1,19})(?![A-Za-z0-9_]*@)" | |
| ) | |
| # Substitute handles with ' ' to ensure that text on either side of removed handles are tokenized correctly | |
| return pattern.sub(" ", text) | |
| ###################################################################### | |
| # Tokenization Function | |
| ###################################################################### | |
| def casual_tokenize(text, preserve_case=True, reduce_len=False, strip_handles=False): | |
| """ | |
| Convenience function for wrapping the tokenizer. | |
| """ | |
| return TweetTokenizer(preserve_case=preserve_case, reduce_len=reduce_len, strip_handles=strip_handles).tokenize( | |
| text | |
| ) | |
| ############################################################################### | |