Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2023 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ ConvNeXTV2 model configuration""" | |
| from ...configuration_utils import PretrainedConfig | |
| from ...utils import logging | |
| from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices | |
| logger = logging.get_logger(__name__) | |
| CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
| "facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json", | |
| } | |
| class ConvNextV2Config(BackboneConfigMixin, PretrainedConfig): | |
| r""" | |
| This is the configuration class to store the configuration of a [`ConvNextV2Model`]. It is used to instantiate an | |
| ConvNeXTV2 model according to the specified arguments, defining the model architecture. Instantiating a | |
| configuration with the defaults will yield a similar configuration to that of the ConvNeXTV2 | |
| [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) architecture. | |
| Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| documentation from [`PretrainedConfig`] for more information. | |
| Args: | |
| num_channels (`int`, *optional*, defaults to 3): | |
| The number of input channels. | |
| patch_size (`int`, optional, defaults to 4): | |
| Patch size to use in the patch embedding layer. | |
| num_stages (`int`, optional, defaults to 4): | |
| The number of stages in the model. | |
| hidden_sizes (`List[int]`, *optional*, defaults to `[96, 192, 384, 768]`): | |
| Dimensionality (hidden size) at each stage. | |
| depths (`List[int]`, *optional*, defaults to `[3, 3, 9, 3]`): | |
| Depth (number of blocks) for each stage. | |
| hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | |
| The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`, | |
| `"selu"` and `"gelu_new"` are supported. | |
| initializer_range (`float`, *optional*, defaults to 0.02): | |
| The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
| layer_norm_eps (`float`, *optional*, defaults to 1e-12): | |
| The epsilon used by the layer normalization layers. | |
| drop_path_rate (`float`, *optional*, defaults to 0.0): | |
| The drop rate for stochastic depth. | |
| out_features (`List[str]`, *optional*): | |
| If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. | |
| (depending on how many stages the model has). If unset and `out_indices` is set, will default to the | |
| corresponding stages. If unset and `out_indices` is unset, will default to the last stage. | |
| out_indices (`List[int]`, *optional*): | |
| If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how | |
| many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. | |
| If unset and `out_features` is unset, will default to the last stage. | |
| Example: | |
| ```python | |
| >>> from transformers import ConvNeXTV2Config, ConvNextV2Model | |
| >>> # Initializing a ConvNeXTV2 convnextv2-tiny-1k-224 style configuration | |
| >>> configuration = ConvNeXTV2Config() | |
| >>> # Initializing a model (with random weights) from the convnextv2-tiny-1k-224 style configuration | |
| >>> model = ConvNextV2Model(configuration) | |
| >>> # Accessing the model configuration | |
| >>> configuration = model.config | |
| ```""" | |
| model_type = "convnextv2" | |
| def __init__( | |
| self, | |
| num_channels=3, | |
| patch_size=4, | |
| num_stages=4, | |
| hidden_sizes=None, | |
| depths=None, | |
| hidden_act="gelu", | |
| initializer_range=0.02, | |
| layer_norm_eps=1e-12, | |
| drop_path_rate=0.0, | |
| image_size=224, | |
| out_features=None, | |
| out_indices=None, | |
| **kwargs, | |
| ): | |
| super().__init__(**kwargs) | |
| self.num_channels = num_channels | |
| self.patch_size = patch_size | |
| self.num_stages = num_stages | |
| self.hidden_sizes = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes | |
| self.depths = [3, 3, 9, 3] if depths is None else depths | |
| self.hidden_act = hidden_act | |
| self.initializer_range = initializer_range | |
| self.layer_norm_eps = layer_norm_eps | |
| self.drop_path_rate = drop_path_rate | |
| self.image_size = image_size | |
| self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] | |
| self._out_features, self._out_indices = get_aligned_output_features_output_indices( | |
| out_features=out_features, out_indices=out_indices, stage_names=self.stage_names | |
| ) | |