Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2020, Microsoft and the HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ DeBERTa model configuration""" | |
| from collections import OrderedDict | |
| from typing import TYPE_CHECKING, Any, Mapping, Optional, Union | |
| from ...configuration_utils import PretrainedConfig | |
| from ...onnx import OnnxConfig | |
| from ...utils import logging | |
| if TYPE_CHECKING: | |
| from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType | |
| logger = logging.get_logger(__name__) | |
| DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
| "microsoft/deberta-base": "https://huggingface.co/microsoft/deberta-base/resolve/main/config.json", | |
| "microsoft/deberta-large": "https://huggingface.co/microsoft/deberta-large/resolve/main/config.json", | |
| "microsoft/deberta-xlarge": "https://huggingface.co/microsoft/deberta-xlarge/resolve/main/config.json", | |
| "microsoft/deberta-base-mnli": "https://huggingface.co/microsoft/deberta-base-mnli/resolve/main/config.json", | |
| "microsoft/deberta-large-mnli": "https://huggingface.co/microsoft/deberta-large-mnli/resolve/main/config.json", | |
| "microsoft/deberta-xlarge-mnli": "https://huggingface.co/microsoft/deberta-xlarge-mnli/resolve/main/config.json", | |
| } | |
| class DebertaConfig(PretrainedConfig): | |
| r""" | |
| This is the configuration class to store the configuration of a [`DebertaModel`] or a [`TFDebertaModel`]. It is | |
| used to instantiate a DeBERTa model according to the specified arguments, defining the model architecture. | |
| Instantiating a configuration with the defaults will yield a similar configuration to that of the DeBERTa | |
| [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) architecture. | |
| Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| documentation from [`PretrainedConfig`] for more information. | |
| Arguments: | |
| vocab_size (`int`, *optional*, defaults to 30522): | |
| Vocabulary size of the DeBERTa model. Defines the number of different tokens that can be represented by the | |
| `inputs_ids` passed when calling [`DebertaModel`] or [`TFDebertaModel`]. | |
| hidden_size (`int`, *optional*, defaults to 768): | |
| Dimensionality of the encoder layers and the pooler layer. | |
| num_hidden_layers (`int`, *optional*, defaults to 12): | |
| Number of hidden layers in the Transformer encoder. | |
| num_attention_heads (`int`, *optional*, defaults to 12): | |
| Number of attention heads for each attention layer in the Transformer encoder. | |
| intermediate_size (`int`, *optional*, defaults to 3072): | |
| Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | |
| hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): | |
| The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
| `"relu"`, `"silu"`, `"gelu"`, `"tanh"`, `"gelu_fast"`, `"mish"`, `"linear"`, `"sigmoid"` and `"gelu_new"` | |
| are supported. | |
| hidden_dropout_prob (`float`, *optional*, defaults to 0.1): | |
| The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
| attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): | |
| The dropout ratio for the attention probabilities. | |
| max_position_embeddings (`int`, *optional*, defaults to 512): | |
| The maximum sequence length that this model might ever be used with. Typically set this to something large | |
| just in case (e.g., 512 or 1024 or 2048). | |
| type_vocab_size (`int`, *optional*, defaults to 2): | |
| The vocabulary size of the `token_type_ids` passed when calling [`DebertaModel`] or [`TFDebertaModel`]. | |
| initializer_range (`float`, *optional*, defaults to 0.02): | |
| The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
| layer_norm_eps (`float`, *optional*, defaults to 1e-12): | |
| The epsilon used by the layer normalization layers. | |
| relative_attention (`bool`, *optional*, defaults to `False`): | |
| Whether use relative position encoding. | |
| max_relative_positions (`int`, *optional*, defaults to 1): | |
| The range of relative positions `[-max_position_embeddings, max_position_embeddings]`. Use the same value | |
| as `max_position_embeddings`. | |
| pad_token_id (`int`, *optional*, defaults to 0): | |
| The value used to pad input_ids. | |
| position_biased_input (`bool`, *optional*, defaults to `True`): | |
| Whether add absolute position embedding to content embedding. | |
| pos_att_type (`List[str]`, *optional*): | |
| The type of relative position attention, it can be a combination of `["p2c", "c2p"]`, e.g. `["p2c"]`, | |
| `["p2c", "c2p"]`. | |
| layer_norm_eps (`float`, optional, defaults to 1e-12): | |
| The epsilon used by the layer normalization layers. | |
| Example: | |
| ```python | |
| >>> from transformers import DebertaConfig, DebertaModel | |
| >>> # Initializing a DeBERTa microsoft/deberta-base style configuration | |
| >>> configuration = DebertaConfig() | |
| >>> # Initializing a model (with random weights) from the microsoft/deberta-base style configuration | |
| >>> model = DebertaModel(configuration) | |
| >>> # Accessing the model configuration | |
| >>> configuration = model.config | |
| ```""" | |
| model_type = "deberta" | |
| def __init__( | |
| self, | |
| vocab_size=50265, | |
| hidden_size=768, | |
| num_hidden_layers=12, | |
| num_attention_heads=12, | |
| intermediate_size=3072, | |
| hidden_act="gelu", | |
| hidden_dropout_prob=0.1, | |
| attention_probs_dropout_prob=0.1, | |
| max_position_embeddings=512, | |
| type_vocab_size=0, | |
| initializer_range=0.02, | |
| layer_norm_eps=1e-7, | |
| relative_attention=False, | |
| max_relative_positions=-1, | |
| pad_token_id=0, | |
| position_biased_input=True, | |
| pos_att_type=None, | |
| pooler_dropout=0, | |
| pooler_hidden_act="gelu", | |
| **kwargs, | |
| ): | |
| super().__init__(**kwargs) | |
| self.hidden_size = hidden_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.intermediate_size = intermediate_size | |
| self.hidden_act = hidden_act | |
| self.hidden_dropout_prob = hidden_dropout_prob | |
| self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
| self.max_position_embeddings = max_position_embeddings | |
| self.type_vocab_size = type_vocab_size | |
| self.initializer_range = initializer_range | |
| self.relative_attention = relative_attention | |
| self.max_relative_positions = max_relative_positions | |
| self.pad_token_id = pad_token_id | |
| self.position_biased_input = position_biased_input | |
| # Backwards compatibility | |
| if type(pos_att_type) == str: | |
| pos_att_type = [x.strip() for x in pos_att_type.lower().split("|")] | |
| self.pos_att_type = pos_att_type | |
| self.vocab_size = vocab_size | |
| self.layer_norm_eps = layer_norm_eps | |
| self.pooler_hidden_size = kwargs.get("pooler_hidden_size", hidden_size) | |
| self.pooler_dropout = pooler_dropout | |
| self.pooler_hidden_act = pooler_hidden_act | |
| # Copied from transformers.models.deberta_v2.configuration_deberta_v2.DebertaV2OnnxConfig | |
| class DebertaOnnxConfig(OnnxConfig): | |
| def inputs(self) -> Mapping[str, Mapping[int, str]]: | |
| if self.task == "multiple-choice": | |
| dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} | |
| else: | |
| dynamic_axis = {0: "batch", 1: "sequence"} | |
| if self._config.type_vocab_size > 0: | |
| return OrderedDict( | |
| [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] | |
| ) | |
| else: | |
| return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)]) | |
| def default_onnx_opset(self) -> int: | |
| return 12 | |
| def generate_dummy_inputs( | |
| self, | |
| preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"], | |
| batch_size: int = -1, | |
| seq_length: int = -1, | |
| num_choices: int = -1, | |
| is_pair: bool = False, | |
| framework: Optional["TensorType"] = None, | |
| num_channels: int = 3, | |
| image_width: int = 40, | |
| image_height: int = 40, | |
| tokenizer: "PreTrainedTokenizerBase" = None, | |
| ) -> Mapping[str, Any]: | |
| dummy_inputs = super().generate_dummy_inputs(preprocessor=preprocessor, framework=framework) | |
| if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: | |
| del dummy_inputs["token_type_ids"] | |
| return dummy_inputs | |