Update app.py
Browse files
app.py
CHANGED
|
@@ -1,16 +1,18 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import
|
| 3 |
import torch
|
| 4 |
|
| 5 |
-
# Загружаем
|
| 6 |
model_name = "distilgpt2"
|
| 7 |
try:
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
| 14 |
except Exception as e:
|
| 15 |
print(f"Ошибка загрузки модели: {e}")
|
| 16 |
exit(1)
|
|
@@ -23,34 +25,19 @@ def respond(message, history, max_tokens=256, temperature=0.7, top_p=0.9):
|
|
| 23 |
input_text += f"User: {user_msg}\nAssistant: {bot_msg}\n"
|
| 24 |
input_text += f"User: {message}"
|
| 25 |
|
| 26 |
-
#
|
| 27 |
try:
|
| 28 |
-
|
| 29 |
input_text,
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
| 34 |
)
|
| 35 |
-
|
| 36 |
-
return f"Ошибка токенизации: {e}", history
|
| 37 |
-
|
| 38 |
-
# Генерация ответа
|
| 39 |
-
try:
|
| 40 |
-
with torch.no_grad(): # Отключаем градиенты для экономии памяти
|
| 41 |
-
outputs = model.generate(
|
| 42 |
-
inputs["input_ids"],
|
| 43 |
-
max_length=max_tokens,
|
| 44 |
-
temperature=temperature,
|
| 45 |
-
top_p=top_p,
|
| 46 |
-
do_sample=True,
|
| 47 |
-
pad_token_id=tokenizer.eos_token_id,
|
| 48 |
-
no_repeat_ngram_size=2,
|
| 49 |
-
num_beams=2 # Добавляем beam search для лучшего качества
|
| 50 |
-
)
|
| 51 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 52 |
-
# Удаляем входной текст из ответа
|
| 53 |
-
response = response[len(input_text):].strip()
|
| 54 |
except Exception as e:
|
| 55 |
return f"Ошибка генерации ответа: {e}", history
|
| 56 |
|
|
@@ -67,49 +54,33 @@ def format_response(response):
|
|
| 67 |
return f"Предварительный диагноз: {diagnosis}\nОперация: {operation}\nЛечение: {treatment}"
|
| 68 |
|
| 69 |
def extract_diagnosis(response):
|
| 70 |
-
# Простое извлечение диагноза
|
| 71 |
sentences = response.split(".")
|
| 72 |
return sentences[0].strip() if sentences else response.strip()
|
| 73 |
|
| 74 |
def extract_operation(response):
|
| 75 |
-
# Упрощенная логика: операция не требуется
|
| 76 |
return "Не требуется"
|
| 77 |
|
| 78 |
def extract_treatment(response):
|
| 79 |
-
# Извлечение лечения
|
| 80 |
sentences = response.split(".")
|
| 81 |
return sentences[-1].strip() if len(sentences) > 1 else "Не указано"
|
| 82 |
|
| 83 |
# Gradio интерфейс
|
| 84 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 85 |
-
gr.Markdown("## Медицинский чат-бот
|
| 86 |
-
chatbot = gr.Chatbot(label="
|
| 87 |
-
msg = gr.Textbox(
|
| 88 |
-
label="Ваше сообщение",
|
| 89 |
-
placeholder="Опишите симптомы (например, 'Болит голова и температура')...",
|
| 90 |
-
lines=2
|
| 91 |
-
)
|
| 92 |
with gr.Row():
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
label="Макс. токенов"
|
| 99 |
-
)
|
| 100 |
-
temperature = gr.Slider(
|
| 101 |
-
minimum=0.1,
|
| 102 |
-
maximum=1.5,
|
| 103 |
-
value=0.7,
|
| 104 |
-
label="Температура"
|
| 105 |
-
)
|
| 106 |
-
top_p = gr.Slider(
|
| 107 |
-
minimum=0.1,
|
| 108 |
-
maximum=1.0,
|
| 109 |
-
value=0.9,
|
| 110 |
-
label="Top-p"
|
| 111 |
)
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
state = gr.State(value=[])
|
| 114 |
|
| 115 |
def submit_message(message, history, max_tokens, temperature, top_p):
|
|
@@ -121,13 +92,22 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 121 |
def clear_chat():
|
| 122 |
return [], [], ""
|
| 123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
msg.submit(
|
| 125 |
fn=submit_message,
|
| 126 |
inputs=[msg, state, max_tokens, temperature, top_p],
|
| 127 |
outputs=[chatbot, state, msg],
|
| 128 |
queue=True
|
| 129 |
)
|
| 130 |
-
|
|
|
|
| 131 |
fn=clear_chat,
|
| 132 |
outputs=[chatbot, state, msg]
|
| 133 |
)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
import torch
|
| 4 |
|
| 5 |
+
# Загружаем модель через pipeline (локально, но из Hugging Face Hub)
|
| 6 |
model_name = "distilgpt2"
|
| 7 |
try:
|
| 8 |
+
generator = pipeline(
|
| 9 |
+
"text-generation",
|
| 10 |
+
model=model_name,
|
| 11 |
+
device=-1, # -1 означает CPU, подходит для бесплатного Spaces
|
| 12 |
+
framework="pt",
|
| 13 |
+
max_length=512,
|
| 14 |
+
truncation=True
|
| 15 |
+
)
|
| 16 |
except Exception as e:
|
| 17 |
print(f"Ошибка загрузки модели: {e}")
|
| 18 |
exit(1)
|
|
|
|
| 25 |
input_text += f"User: {user_msg}\nAssistant: {bot_msg}\n"
|
| 26 |
input_text += f"User: {message}"
|
| 27 |
|
| 28 |
+
# Генерация ответа через pipeline
|
| 29 |
try:
|
| 30 |
+
outputs = generator(
|
| 31 |
input_text,
|
| 32 |
+
max_length=max_tokens,
|
| 33 |
+
temperature=temperature,
|
| 34 |
+
top_p=top_p,
|
| 35 |
+
do_sample=True,
|
| 36 |
+
no_repeat_ngram_size=2,
|
| 37 |
+
pad_token_id=generator.tokenizer.eos_token_id,
|
| 38 |
+
num_return_sequences=1
|
| 39 |
)
|
| 40 |
+
response = outputs[0]["generated_text"][len(input_text):].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
except Exception as e:
|
| 42 |
return f"Ошибка генерации ответа: {e}", history
|
| 43 |
|
|
|
|
| 54 |
return f"Предварительный диагноз: {diagnosis}\nОперация: {operation}\nЛечение: {treatment}"
|
| 55 |
|
| 56 |
def extract_diagnosis(response):
|
|
|
|
| 57 |
sentences = response.split(".")
|
| 58 |
return sentences[0].strip() if sentences else response.strip()
|
| 59 |
|
| 60 |
def extract_operation(response):
|
|
|
|
| 61 |
return "Не требуется"
|
| 62 |
|
| 63 |
def extract_treatment(response):
|
|
|
|
| 64 |
sentences = response.split(".")
|
| 65 |
return sentences[-1].strip() if len(sentences) > 1 else "Не указано"
|
| 66 |
|
| 67 |
# Gradio интерфейс
|
| 68 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 69 |
+
gr.Markdown("## Медицинский чат-бот на базе DistilGPT-2")
|
| 70 |
+
chatbot = gr.Chatbot(label="Чат", height=400)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
with gr.Row():
|
| 72 |
+
msg = gr.Textbox(
|
| 73 |
+
label="Ваше сообщение",
|
| 74 |
+
placeholder="Опишите симптомы (например, 'Болит горло')...",
|
| 75 |
+
lines=2,
|
| 76 |
+
show_label=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
)
|
| 78 |
+
submit_btn = gr.Button("Отправить", variant="primary")
|
| 79 |
+
with gr.Row():
|
| 80 |
+
max_tokens = gr.Slider(minimum=50, maximum=512, value=256, step=10, label="Макс. токенов")
|
| 81 |
+
temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.7, label="Температура")
|
| 82 |
+
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, label="Top-p")
|
| 83 |
+
clear_btn = gr.Button("Очистить чат", variant="secondary")
|
| 84 |
state = gr.State(value=[])
|
| 85 |
|
| 86 |
def submit_message(message, history, max_tokens, temperature, top_p):
|
|
|
|
| 92 |
def clear_chat():
|
| 93 |
return [], [], ""
|
| 94 |
|
| 95 |
+
# Кнопка "Отправить"
|
| 96 |
+
submit_btn.click(
|
| 97 |
+
fn=submit_message,
|
| 98 |
+
inputs=[msg, state, max_tokens, temperature, top_p],
|
| 99 |
+
outputs=[chatbot, state, msg],
|
| 100 |
+
queue=True
|
| 101 |
+
)
|
| 102 |
+
# Поддержка Enter
|
| 103 |
msg.submit(
|
| 104 |
fn=submit_message,
|
| 105 |
inputs=[msg, state, max_tokens, temperature, top_p],
|
| 106 |
outputs=[chatbot, state, msg],
|
| 107 |
queue=True
|
| 108 |
)
|
| 109 |
+
# Кнопка "Очистить"
|
| 110 |
+
clear_btn.click(
|
| 111 |
fn=clear_chat,
|
| 112 |
outputs=[chatbot, state, msg]
|
| 113 |
)
|