File size: 13,802 Bytes
0510038 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
# Lineage Graph Accelerator - User Guide
A comprehensive guide to using the Lineage Graph Accelerator for extracting, visualizing, and exporting data lineage from your data platforms.
---
## Table of Contents
1. [Getting Started](#getting-started)
2. [Input Formats](#input-formats)
3. [Sample Lineage Examples](#sample-lineage-examples)
4. [Export to Data Catalogs](#export-to-data-catalogs)
5. [MCP Server Integration](#mcp-server-integration)
6. [Troubleshooting](#troubleshooting)
7. [FAQ](#faq)
---
## Getting Started
### Quick Start (3 Steps)
1. **Open the App**: Navigate to the Lineage Graph Accelerator on HuggingFace Spaces
2. **Load Sample Data**: Click "Load Sample" to try pre-built examples
3. **Extract Lineage**: Click "Extract Lineage" to visualize the data flow
### Interface Overview
The application has four main tabs:
| Tab | Purpose |
|-----|---------|
| **Text/File Metadata** | Paste or upload metadata directly |
| **BigQuery** | Connect to Google BigQuery for schema extraction |
| **URL/API** | Fetch metadata from REST APIs |
| **Demo Gallery** | One-click demos of various lineage scenarios |
---
## Input Formats
The Lineage Graph Accelerator supports multiple metadata formats:
### 1. Simple JSON (Nodes & Edges)
The simplest format with explicit nodes and edges:
```json
{
"nodes": [
{"id": "raw_customers", "type": "table", "name": "raw_customers"},
{"id": "clean_customers", "type": "table", "name": "clean_customers"},
{"id": "analytics_customers", "type": "table", "name": "analytics_customers"}
],
"edges": [
{"from": "raw_customers", "to": "clean_customers"},
{"from": "clean_customers", "to": "analytics_customers"}
]
}
```
**Result**: A linear graph showing `raw_customers β clean_customers β analytics_customers`
---
### 2. dbt Manifest Format
Extract lineage from dbt's `manifest.json`:
```json
{
"metadata": {
"dbt_version": "1.7.0",
"project_name": "my_project"
},
"nodes": {
"source.my_project.raw.customers": {
"resource_type": "source",
"name": "customers",
"schema": "raw"
},
"model.my_project.stg_customers": {
"resource_type": "model",
"name": "stg_customers",
"schema": "staging",
"depends_on": {
"nodes": ["source.my_project.raw.customers"]
}
},
"model.my_project.dim_customers": {
"resource_type": "model",
"name": "dim_customers",
"schema": "marts",
"depends_on": {
"nodes": ["model.my_project.stg_customers"]
}
}
}
}
```
**Result**: A graph showing the dbt model dependencies from source to staging to marts.
---
### 3. Airflow DAG Format
Extract task dependencies from Airflow DAGs:
```json
{
"dag_id": "etl_pipeline",
"tasks": [
{
"task_id": "extract_data",
"operator": "PythonOperator",
"upstream_dependencies": []
},
{
"task_id": "transform_data",
"operator": "SparkSubmitOperator",
"upstream_dependencies": ["extract_data"]
},
{
"task_id": "load_data",
"operator": "SnowflakeOperator",
"upstream_dependencies": ["transform_data"]
}
]
}
```
**Result**: A DAG visualization showing `extract_data β transform_data β load_data`
---
### 4. Data Warehouse Lineage Format
For Snowflake, BigQuery, or other warehouse lineage:
```json
{
"warehouse": {
"platform": "Snowflake",
"database": "ANALYTICS_DW"
},
"lineage": {
"datasets": [
{"id": "raw.customers", "type": "table", "schema": "RAW"},
{"id": "staging.customers", "type": "view", "schema": "STAGING"},
{"id": "marts.dim_customer", "type": "table", "schema": "MARTS"}
],
"relationships": [
{"source": "raw.customers", "target": "staging.customers", "type": "transform"},
{"source": "staging.customers", "target": "marts.dim_customer", "type": "transform"}
]
}
}
```
---
### 5. ETL Pipeline Format
For complex multi-stage ETL pipelines:
```json
{
"pipeline": {
"name": "customer_analytics",
"schedule": "daily"
},
"stages": [
{
"id": "extract",
"steps": [
{"id": "ext_crm", "name": "Extract CRM Data", "inputs": []},
{"id": "ext_payments", "name": "Extract Payments", "inputs": []}
]
},
{
"id": "transform",
"steps": [
{"id": "tfm_customers", "name": "Transform Customers", "inputs": ["ext_crm", "ext_payments"]}
]
},
{
"id": "load",
"steps": [
{"id": "load_warehouse", "name": "Load to Warehouse", "inputs": ["tfm_customers"]}
]
}
]
}
```
---
## Sample Lineage Examples
### Example 1: Simple E-Commerce Lineage
**Scenario**: Track data flow from raw transaction data to analytics reports.
```
Source Systems β Raw Layer β Staging β Data Marts β Reports
```
**Input**:
```json
{
"nodes": [
{"id": "shopify_api", "type": "source", "name": "Shopify API"},
{"id": "raw_orders", "type": "table", "name": "raw.orders"},
{"id": "stg_orders", "type": "model", "name": "staging.stg_orders"},
{"id": "fct_orders", "type": "fact", "name": "marts.fct_orders"},
{"id": "rpt_daily_sales", "type": "report", "name": "Daily Sales Report"}
],
"edges": [
{"from": "shopify_api", "to": "raw_orders", "type": "ingest"},
{"from": "raw_orders", "to": "stg_orders", "type": "transform"},
{"from": "stg_orders", "to": "fct_orders", "type": "transform"},
{"from": "fct_orders", "to": "rpt_daily_sales", "type": "aggregate"}
]
}
```
**Expected Output**: A Mermaid diagram showing the complete data flow with color-coded nodes by type.
---
### Example 2: Multi-Source Customer 360
**Scenario**: Combine data from multiple sources to create a unified customer view.
```
CRM + Payments + Website β Identity Resolution β Customer 360
```
**Input**:
```json
{
"nodes": [
{"id": "salesforce", "type": "source", "name": "Salesforce CRM"},
{"id": "stripe", "type": "source", "name": "Stripe Payments"},
{"id": "ga4", "type": "source", "name": "Google Analytics"},
{"id": "identity_resolution", "type": "model", "name": "Identity Resolution"},
{"id": "customer_360", "type": "dimension", "name": "Customer 360"}
],
"edges": [
{"from": "salesforce", "to": "identity_resolution"},
{"from": "stripe", "to": "identity_resolution"},
{"from": "ga4", "to": "identity_resolution"},
{"from": "identity_resolution", "to": "customer_360"}
]
}
```
---
### Example 3: dbt Project with Multiple Layers
**Scenario**: A complete dbt project with staging, intermediate, and mart layers.
Load the "dbt Manifest" sample from the dropdown to see a full example with:
- 4 source tables
- 4 staging models
- 2 intermediate models
- 3 mart tables
- 2 reporting views
---
### Example 4: Airflow ETL Pipeline
**Scenario**: A daily ETL pipeline with parallel extraction, sequential transformation, and loading.
Load the "Airflow DAG" sample to see:
- Parallel extract tasks
- Transform tasks with dependencies
- Load tasks to data warehouse
- Final notification task
---
## Export to Data Catalogs
The Lineage Graph Accelerator can export lineage to major enterprise data catalogs.
### Supported Formats
| Format | Platform | Description |
|--------|----------|-------------|
| **OpenLineage** | Universal | Open standard, works with Marquez, Atlan, DataHub |
| **Collibra** | Collibra Data Intelligence | Enterprise data governance platform |
| **Purview** | Microsoft Purview | Azure native data governance |
| **Alation** | Alation Data Catalog | Self-service analytics catalog |
### How to Export
1. **Enter or load your metadata** in the Text/File Metadata tab
2. **Extract the lineage** to verify it looks correct
3. **Expand "Export to Data Catalog"** accordion
4. **Select your format** from the dropdown
5. **Click "Generate Export"** to create the export file
6. **Copy or download** the JSON output
### Export Format Details
#### OpenLineage Export
The OpenLineage export follows the [OpenLineage specification](https://openlineage.io/):
```json
{
"producer": "lineage-accelerator",
"schemaURL": "https://openlineage.io/spec/1-0-0/OpenLineage.json",
"events": [
{
"eventType": "COMPLETE",
"job": {"namespace": "...", "name": "..."},
"inputs": [...],
"outputs": [...]
}
]
}
```
#### Collibra Export
Ready for Collibra's Import API:
```json
{
"community": {"name": "Data Lineage"},
"domain": {"name": "Physical Data Dictionary"},
"assets": [...],
"relations": [...]
}
```
#### Microsoft Purview Export
Compatible with Purview's bulk import:
```json
{
"collection": {"referenceName": "lineage-accelerator"},
"entities": [...],
"processes": [...]
}
```
#### Alation Export
Ready for Alation's bulk upload:
```json
{
"datasource": {"id": 1, "title": "..."},
"tables": [...],
"columns": [...],
"lineage": [...],
"dataflows": [...]
}
```
---
## MCP Server Integration
Connect to external MCP (Model Context Protocol) servers for enhanced processing.
### What is MCP?
MCP (Model Context Protocol) is a standard for AI model integration. The Lineage Graph Accelerator can connect to MCP servers hosted on HuggingFace Spaces for:
- Enhanced lineage extraction with AI
- Support for additional metadata formats
- Custom processing pipelines
### Configuration
1. **Expand "MCP Server Configuration"** at the top of the app
2. **Enter the MCP Server URL**: e.g., `https://your-space.hf.space/mcp`
3. **Add API Key** (if required)
4. **Click "Test Connection"** to verify
### Example MCP Servers
| Server | URL | Description |
|--------|-----|-------------|
| Demo Server | `http://localhost:9000/mcp` | Local testing |
| HuggingFace | `https://your-space.hf.space/mcp` | Production deployment |
### Running Your Own MCP Server
See `mcp_example/server.py` for a FastAPI-based MCP server example:
```bash
cd mcp_example
uvicorn server:app --reload --port 9000
```
---
## Troubleshooting
### Common Issues
#### "No data to display"
**Cause**: The input metadata couldn't be parsed.
**Solutions**:
1. Verify your JSON is valid (use a JSON validator)
2. Check that the format matches one of the supported types
3. Try loading a sample first to see the expected format
#### "Export functionality not available"
**Cause**: The exporters module isn't loaded.
**Solutions**:
1. Ensure you're running the latest version
2. Check that the `exporters/` directory exists
3. Restart the application
#### MCP Connection Failed
**Cause**: Cannot reach the MCP server.
**Solutions**:
1. Verify the URL is correct
2. Check if the server is running
3. Ensure network/firewall allows the connection
4. Try without the API key first
#### Mermaid Diagram Not Rendering
**Cause**: JavaScript loading issue.
**Solutions**:
1. Refresh the page
2. Try a different browser
3. Check browser console for errors
4. Ensure JavaScript is enabled
### Error Messages
| Error | Meaning | Solution |
|-------|---------|----------|
| "JSONDecodeError" | Invalid JSON input | Fix JSON syntax |
| "KeyError" | Missing required field | Check input format |
| "Timeout" | MCP server slow/unreachable | Increase timeout or check server |
---
## FAQ
### General Questions
**Q: What file formats are supported?**
A: JSON is the primary format. We also support SQL DDL (with limitations) and can parse dbt manifests, Airflow DAGs, and custom formats.
**Q: Can I upload files?**
A: Currently, you need to paste content into the text box. File upload is planned for a future release.
**Q: Is my data stored?**
A: No. All processing happens in your browser session. No data is stored on servers.
### Export Questions
**Q: Which export format should I use?**
A:
- Use **OpenLineage** for universal compatibility
- Use **Collibra/Purview/Alation** if you use those specific platforms
**Q: Can I customize the export?**
A: The current exports use default settings. Advanced customization is available through the API.
### Technical Questions
**Q: What's the maximum graph size?**
A: The UI handles graphs up to ~500 nodes smoothly. Larger graphs may be slow to render.
**Q: Can I use this programmatically?**
A: Yes! See `integration_example.py` for API usage examples.
**Q: Is there a rate limit?**
A: The HuggingFace Space has standard rate limits. For heavy usage, deploy your own instance.
---
## Support
- **Issues**: [GitHub Issues](https://github.com/your-repo/issues)
- **Documentation**: This guide and README.md
- **Community**: HuggingFace Discussions
---
## Appendix: Complete Sample Data
### E-Commerce Platform (Complex)
This sample demonstrates a complete e-commerce analytics platform with:
- 9 source systems (Shopify, Stripe, GA4, etc.)
- 50+ nodes across all data layers
- 80+ lineage relationships
- Multiple output destinations (BI tools, reverse ETL)
Load the "Complex Demo" sample to explore the full graph.
### Node Types Reference
| Type | Color | Description |
|------|-------|-------------|
| `source` | Light Blue | External data sources |
| `table` | Light Green | Database tables |
| `view` | Light Purple | Database views |
| `model` | Light Orange | Transformation models |
| `report` | Light Pink | Reports and dashboards |
| `dimension` | Cyan | Dimension tables |
| `fact` | Light Yellow | Fact tables |
| `destination` | Light Red | Output destinations |
### Edge Types Reference
| Type | Arrow | Description |
|------|-------|-------------|
| `transform` | `-->` | Data transformation |
| `reference` | `-.->` | Reference/lookup |
| `ingest` | `-->` | Data ingestion |
| `export` | `-->` | Data export |
| `join` | `-->` | Table join |
| `aggregate` | `-->` | Aggregation |
---
*Last updated: November 2025*
*Version: 1.0.0*
|