DGADIS / graphrag_agent.py
achenyx1412's picture
Update graphrag_agent.py
f54f083 verified
import os
import json
import gradio as gr
import logging
from typing import List, Tuple, Annotated, TypedDict, Dict, Any, Optional, Literal
from datasets import load_dataset
import pickle
import faiss
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
import pandas as pd
import networkx as nx
import tiktoken
from io import StringIO
from Levenshtein import distance as lev_distance
import wikipedia
from Bio import Entrez
# LangChain imports
from langchain_core.messages import AIMessage, HumanMessage, AnyMessage
from langchain_core.prompts import PromptTemplate
from langchain_openai import ChatOpenAI
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
#from datasets import load_dataset
#import zipfile
import os
from huggingface_hub import hf_hub_download
from zipfile import ZipFile
from huggingface_hub import InferenceClient
import torch
import torch.nn.functional as F
# ======================== 配置 ========================
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
DS_API_KEY = os.getenv("DS_API_KEY")
ENTREZ_EMAIL = os.getenv("ENTREZ_EMAIL")
HF_TOKEN = os.getenv("HF_TOKEN")
Entrez.email = ENTREZ_EMAIL
MAX_TOKENS = 128000
encoding = tiktoken.get_encoding("cl100k_base")
tokenizer = AutoTokenizer.from_pretrained("cambridgeltl/SapBERT-from-PubMedBERT-fulltext",token=HF_TOKEN)
model = AutoModel.from_pretrained("cambridgeltl/SapBERT-from-PubMedBERT-fulltext",token=HF_TOKEN).to(DEVICE)
model.eval()
bi_tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-m3",token=HF_TOKEN)
bi_model = AutoModel.from_pretrained("BAAI/bge-m3",token=HF_TOKEN)
bi_model.eval()
cross_tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-reranker-v2-m3",token=HF_TOKEN)
cross_model = AutoModelForSequenceClassification.from_pretrained("BAAI/bge-reranker-v2-m3",token=HF_TOKEN)
cross_model.eval()
#sapbert_client = InferenceClient(provider="hf-inference",api_key=HF_TOKEN)
#bge_client = InferenceClient(provider="hf-inference", api_key=HF_TOKEN)
#cross_client = InferenceClient(provider="hf-inference", api_key=HF_TOKEN)
# ======================== 全局变量 ========================
faiss_indices = {}
metadata = {}
graph = None
merged_data = None
tokenizer = None
model = None
bi_tokenizer = None
bi_model = None
cross_tokenizer = None
cross_model = None
llm = None
name_search_engine = None
compiled_graph = None
system_initialized = False
# ======================== 状态定义 ========================
class MyState(TypedDict):
messages: Annotated[List[AnyMessage], add_messages]
entity: list
target_label: list
neo4j_retrieval: dict
llm_answer: str
pubmed_search: str
wikipedia_search: str
api_search: str
route: str
sufficient_or_insufficient: str
interaction: str
summarized_query: str
parsed_query: str
user_reply: str
need_user_reply: bool
ai_message: str
label_list = [
"Topography and Morphology", "Chemicals, Drugs, and Biological Products",
"Physical Agents, Forces, and Medical Devices", "Diseases and Diagnoses",
"Procedures", "Living Organisms", "Social Context", "Symptoms, Signs, and Findings",
"Disciplines", "Relevant Persons and Populations", "Numbers",
"Physiological, Biochemical, and Molecular Mechanisms", "Scientific Terms and Methods",
"Others"
]
# ======================== 名称搜索引擎 ========================
class NameSearchEngine:
def __init__(self, merged_data_df):
self.merged_data = merged_data_df
self.merged_data['原名列表'] = self.merged_data['原名列表'].apply(
lambda x: eval(x) if isinstance(x, str) else x
)
self.current_to_old_map = {}
self.all_names_map = {}
for _, row in self.merged_data.iterrows():
现用名 = row['现用名']
原名列表 = row['原名列表']
self.current_to_old_map[现用名] = 原名列表
self.all_names_map[现用名] = 现用名
for 原名 in 原名列表:
self.all_names_map[原名] = 现用名
self.searchable_names = list(self.all_names_map.keys())
def calculate_similarity(self, str1, str2):
if not str1 or not str2:
return 0.0
edit_distance = lev_distance(str1, str2)
max_length = max(len(str1), len(str2))
if max_length == 0:
return 1.0
return max(0.0, 1 - (edit_distance / max_length))
def search(self, query, topk=5, similarity_threshold=0.3):
query = str(query).strip()
if not query:
return []
results = []
for name in self.searchable_names:
similarity = self.calculate_similarity(query, name)
if similarity >= similarity_threshold:
现用名 = self.all_names_map[name]
results.append({
'searched_name': 现用名,
'similarity': similarity
})
results.sort(key=lambda x: x['similarity'], reverse=True)
return [r['searched_name'] for r in results[:topk]]
# ======================== 辅助函数 ========================
def _extract_json_from_text(text: str) -> Dict[str, Any]:
try:
return json.loads(text)
except Exception:
pass
start = text.find("{")
end = text.rfind("}")
if start != -1 and end != -1 and end > start:
try:
return json.loads(text[start:end+1])
except Exception:
return {}
return {}
def embed_entity(entity_text: str):
if not tokenizer or not model:
raise ValueError("embedding model not loaded")
with torch.no_grad():
inputs = tokenizer(
entity_text, return_tensors="pt",
padding=True, truncation=True, max_length=64
).to(DEVICE)
outputs = model(**inputs)
embedding = outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy()
return embedding
#def embed_entity(entity_text: str):
# """使用 Hugging Face Inference API 获取 SapBERT 嵌入"""
# try:result = sapbert_client.feature_extraction(entity_text,model="cambridgeltl/SapBERT-from-PubMedBERT-fulltext")
# 返回结果通常是 list[list[float]],取平均或第一 token
# embedding = [sum(x)/len(x) for x in zip(*result)] # 对每个维度求平均
# return embedding
# except Exception as e:
# print(f"Embedding error: {e}")
# return None
def search_pubmed(pubmed_query: str, max_results: int = 3) -> str:
try:
handle = Entrez.esearch(db="pubmed", term=pubmed_query, retmax=max_results)
record = Entrez.read(handle)
id_list = record["IdList"] if "IdList" in record else []
print(f"🔍 Query: {pubmed_query} → Found {len(id_list)} results")
if not id_list:
return "no articles on pubmed"
handle = Entrez.efetch(db="pubmed", id=id_list, rettype="abstract", retmode="xml")
records = Entrez.read(handle)
results = []
for article in records["PubmedArticle"]:
abstract_parts = article["MedlineCitation"]["Article"].get("Abstract", {}).get("AbstractText", [])
abstract_text = " ".join(abstract_parts)
doi = None
for id_item in article["PubmedData"]["ArticleIdList"]:
if id_item.attributes.get("IdType") == "doi":
doi = str(id_item)
results.append({"abstract": abstract_text, "doi": doi})
return results
except Exception as e:
return f"error in pubmed: {e}"
def search_wikipedia(wikipedia_query, max_chars_per_entity=500) -> str:
try:
try:
summary = wikipedia.summary(wikipedia_query, auto_suggest=False)
except Exception:
candidates = wikipedia.search(wikipedia_query, results=5)
summary = None
for cand in candidates:
try:
summary = wikipedia.summary(cand, auto_suggest=False)
break
except Exception:
continue
if summary is None and candidates:
try:
summary = wikipedia.summary(candidates[0], auto_suggest=True)
except Exception:
summary = None
if summary is None:
raise RuntimeError(f"No viable Wikipedia page found for '{wikipedia_query}'")
clipped = (summary[:max_chars_per_entity] + "...") if len(summary) > max_chars_per_entity else summary
return f"### {wikipedia_query}\n{clipped}"
except Exception as e:
logger.warning(f"error in Wikipedia: {e}")
return f"error in Wikipedia: {str(e)}"
# ======================== Prompt 模板 ========================
LLM = ChatOpenAI(model="deepseek-chat",api_key=DS_API_KEY,base_url="https://api.deepseek.com/v1",temperature=0.0)
extract_prompt_en = PromptTemplate(
input_variables=["query", "label_list"],
template="""
You are a highly specialized AI assistant for dental query analysis.
Your **ONLY** task is to (1) summarize and refine the given query for clarity, (2) extract structured entities and intent labels, and (3) judge whether the question provides sufficient information — nothing else.
---
### LANGUAGE POLICY — STRICTLY ENFORCED
- The **input question may be in ANY language** (e.g., Chinese, Spanish, etc.).
- You **MUST translate the entire question into precise, professional English in dental medicine** before processing.
- **ALL extracted entities (both compound and atomic) MUST be in English**, even if the original term was not.
- **DO NOT preserve or output any non-English text.**
---
### TASK 0: Query Summarization and Refinement
Because the input query may include multiple dialogue turns or excessive context,
you must first perform **concise summarization** of the user's true question before analysis.
Steps:
1. Carefully read the entire input ({query}).
2. Extract only the medically meaningful and question-relevant part.
3. Rephrase it into **a single clear, short, and precise English question**.
- Example: From “Earlier I asked about gingivitis, and now I want to know what medicines are used for it?” →
Summarized query: "What medications are used to treat gingivitis?"
After summarization, all following tasks (entity extraction, labeling, sufficiency judgment)
MUST be based **only on this summarized query**.
---
### TASK 1: Entity Extraction (MUST be in English)
Extract exactly two types of entities:
1. **compound** (1–2 items max):
- The full meaningful phrase **as it appears in the translated English question**.
- Example: If the question is “What is the treatment of gingivitis?” extract → ["gingivitis treatment"]
- Preserve modifiers: e.g., “soft impression material” → ["soft impression material"]
- Must be in English.
2. **atomic** (1–3 items max):
- **ONLY the core biomedical/dental entity name** — must be a concrete, specific term.
- Examples: "gingivitis", "dental implant", "composite resin"
- **FORBIDDEN**: generic words like "treatment", "symptom", "complication", "method", "index", "effect".
- If the compound is "gingivitis treatment" → atomic must be ["gingivitis"], NOT ["treatment"].
- Must be in English.
If no valid medical entity exists → return empty lists: "compound": [], "atomic": []
---
### TASK 2: Intent Label Selection
- Select 1–3 **most relevant** labels from this list:
{label_list}
- Labels must **exactly match** the provided options.
- Choose only labels that correspond to **node types needed to answer the question**.
- Do NOT invent, modify, or translate label names.
---
### TASK 3: Information Sufficiency Judgment
After analyzing the refined question and extracted entities:
- If the question **contains enough detail** for a meaningful medical/dental answer, set
"sufficient_or_insufficient": "sufficient"
- If the question is **ambiguous, missing context, or requires clarification**, set
"sufficient_or_insufficient": "insufficient"
and in "interaction", **clearly state what additional information the user needs to provide**.
Example: "interaction": "Please specify which treatment method or patient condition you are asking about."
If information is sufficient, output "interaction": "nan".
---
### OUTPUT FORMAT — NON-NEGOTIABLE
Output **ONLY** a single, valid JSON object, strictly following this schema:
{{"summarized query": "string (the summarized English question)",
"entity": {{
"compound": [string],
"atomic": [string]
}},
"target_label": [string],
"sufficient_or_insufficient": "sufficient" | "insufficient",
"interaction": "nan" | "string (interaction message)"
}}
All strings in English.
No explanations, no markdown, no notes.
---
### EXAMPLES (Follow Exactly)
**Example 1 — Sufficient Information**
Question: "I have gingivitis. I feel painful. What is the treatment?"
Output:
{{"summarized_query": "What is the treatment of gingivitis?",
"entity": {{
"compound": ["gingivitis treatment"],
"atomic": ["gingivitis"]
}},
"target_label": ["Procedures", "Chemicals, Drugs, and Biological Products"],
"sufficient_or_insufficient": "sufficient",
"interaction": "nan"
}}
**Example 2 — Insufficient Information**
Question: "What is the best treatment?"
Output:
{{"summarized_query": "What is the best treatment?",
"entity": {{
"compound": ["treatment"],
"atomic": []
}},
"target_label": ["Procedures"],
"sufficient_or_insufficient": "insufficient",
"interaction": "Please specify which disease or condition you are referring to."
}}
---
### FINAL INSTRUCTION
**Question to process:**
{query}
→ Output ONLY the JSON. No other text.
"""
)
chain1 = extract_prompt_en | LLM
extract_prompt_en_t = PromptTemplate(
input_variables=["query"],
template="""
You are a highly specialized AI assistant for dental query analysis. Your ONLY task is to extract a structured SPO triple (subject–predicate–object) from a dental-related question — nothing else.
---
### LANGUAGE POLICY — STRICTLY ENFORCED
- The input question may be in ANY language (e.g., Chinese, Spanish, etc.).
- You MUST translate the entire question into precise, professional English in dental medicine before processing.
- ALL extracted entities and relations MUST be in English, even if the original term was not.
- DO NOT preserve or output any non-English text.
---
### TASK: SPO Triple Extraction
Your task is to convert the question into a concise factual statement (triple) using the following structure:
(SUBJECT, PREDICATE, OBJECT)
#### Rules:
1. The SUBJECT should include any condition, disease, patient group, or object implied in the question.
- e.g., "children with dental trauma", "impression material", "implant restoration".
2. The PREDICATE should summarize the core intent or relationship implied by the question.
- Common examples:
"has treatment", "has complication", "is measured by", "is caused by", "is indicated for", "has preventive method", "has material".
- The predicate should be neutral, not in question form (avoid “what”, “how”, “which” etc.).
3. The OBJECT should remain as "unknown".
- This means you do not predict the answer type (e.g., “treatment method” or “index”), only mark it as "unknown".
- The purpose is to represent the question as a knowledge triple skeleton.
4. If the subject already includes the condition modifier (like “for children”), integrate it directly, e.g.:
- “Children dental trauma has treatment”
- “Impression material has measurement index”
---
### OUTPUT FORMAT — STRICTLY ENFORCED
Output ONLY one valid JSON object:
{{
"triple": {{
"subject": "string",
"predicate": "string",
"object": "unknown"
}}
}}
No markdown, no explanations, no extra text.
---
### EXAMPLES
Example 1
Question: "What is the treatment of gingivitis?"
Output:
{{
"triple": {{
"subject": "gingivitis",
"predicate": "has treatment",
"object": "unknown"
}}
}}
Example 2
Question: "What are the complications of implant restoration?"
Output:
{{
"triple": {{
"subject": "implant restoration",
"predicate": "has complication",
"object": "unknown"
}}
}}
Example 3
Question: "印模材料凝固后,其软度通常用什么指标表示?"
(Translated: "After impression material solidifies, what index expresses its softness?")
Output:
{{
"triple": {{
"subject": "impression material",
"predicate": "has measurement index",
"object": "unknown"
}}
}}
Example 4
Question: "对于儿童的牙外伤应该如何治疗?"
Output:
{{
"triple": {{
"subject": "children dental trauma",
"predicate": "has treatment",
"object": "unknown"
}}
}}
---
### FINAL INSTRUCTION
Question to process:
{query}
→ Output ONLY the JSON triple above. Nothing else.
"""
)
chain1_t = extract_prompt_en_t | LLM
knowledge_router_prompt_en = PromptTemplate(
input_variables=["neo4j_retrieval", "query"],
template="""
You are an expert dental medicine AI router specialized in evaluating knowledge sufficiency and generating targeted retrieval queries.
---
### OBJECTIVE
Your function is **NOT** to answer the user's question directly.
Instead, you evaluate whether the provided **Knowledge Graph Context** contains enough information to fully and accurately answer the question.
If not, you will identify the **specific knowledge gaps** and write **search queries** to retrieve only the missing parts — **do NOT discard or ignore the existing context**.
---
### INPUTS
**Knowledge Graph Context:**
{neo4j_retrieval}
**User's Question:**
{query}
---
### INSTRUCTIONS
1. **Carefully analyze** the Knowledge Graph Context and the User's Question together.
- Consider what information is already covered by the Knowledge Graph Context.
- Identify what information is **missing** (the “knowledge gaps”) that prevents a complete answer.
2. **If the context is sufficient**, respond with:
- `"answer": "sufficient_knowledge"`
- Leave both `"pubmed_search"` and `"wikipedia_search"` as empty strings.
3. **If the context is insufficient**, respond with:
- `"answer": "lack_knowledge"`
- Generate **two concise and high-quality retrieval queries** focused ONLY on the missing knowledge:
- `"pubmed_search"`: a Boolean-style scientific query suitable for PubMed
(use terms, synonyms, and AND/OR operators; 5–12 words total)
- `"wikipedia_search"`: a natural language query suitable for Wikipedia
(short, clear, and human-readable; 3–8 words total)
**Do not repeat or rephrase existing context.**
Your goal is to complement what is missing — not replace the Knowledge Graph Context.
4. **Do not include explanations, markdown, or reasoning text.**
Output only a **valid JSON** object.
---
### OUTPUT FORMAT
Your response must strictly follow this structure:
{{
"answer": "sufficient_knowledge" | "lack_knowledge",
"pubmed_search": "string",
"wikipedia_search": "string"
}}
---
### EXAMPLES
**Example 1 — Context Sufficient**
Question: "What is the treatment of gingivitis?"
Knowledge Graph Context already includes detailed information about gingivitis treatments.
Output:
{{
"answer": "sufficient_knowledge",
"pubmed_search": "",
"wikipedia_search": ""
}}
**Example 2 — Context Insufficient**
Question: "What are the molecular mechanisms of peri-implantitis?"
Knowledge Graph Context only includes definitions and symptoms.
Output:
{{
"answer": "lack_knowledge",
"pubmed_search": "(peri-implantitis) AND (molecular mechanism OR inflammatory pathway)",
"wikipedia_search": "molecular mechanisms of peri-implantitis"
}}
---
### FINAL RULE
Provide only the JSON object as your final response — nothing else.
"""
)
chain2 = knowledge_router_prompt_en | LLM
final_answer_prompt_en = PromptTemplate(
input_variables=["query", "neo4j_retrieval", "api_search_result"],
template = """
You are an expert dental medicine AI assistant. Answer the essay question using the provided context.
**Essay Question:**
{query}
**Knowledge Graph Information:**
{neo4j_retrieval}
**External Search (PubMed, Wikipedia):**
{api_search_result}
**Requirements:**
- Answer the question based on the context above.
- If the context is insufficient, reply by your own knowledge and tell the user that you couldn't find relevant information.
- Always provide a 'Source' field at the end of your answer:
* If the answer is based on the knowledge graph, include the corresponding edge's `chunk_id`.
* If the answer is based on PubMed, include the `DOI`.
* If the answer is based on Wikipedia, include `"wikipedia"`.
* If the answer is generated from your internal knowledge, include `"LLM_database"`.
"""
)
chain3 = final_answer_prompt_en | LLM
# ======================== 处理节点 ========================
def parse_query(state: MyState):
logger.info("---NODE: parse_query---")
user_query = [message.content for message in state["messages"] if hasattr(message, 'content')]
query_str = user_query
print(f"parse_query: {query_str}")
parse_outcome = chain1.invoke({"query": query_str, "label_list": "\n".join(label_list)})
parse_outcome_t = chain1_t.invoke({"query": query_str})
try:
parsed_text = getattr(parse_outcome, "content", str(parse_outcome)).strip()
parsed_json = _extract_json_from_text(parsed_text)
print(f"parse_json:{parsed_json}")
entity_compound_atomic = parsed_json.get("entity", [])
entity_compound = entity_compound_atomic.get("compound", [])
entity_atomic = entity_compound_atomic.get("atomic", [])
summarized_query = parsed_json.get("summarized_query")
target_label = parsed_json.get("target_label", [])
sufficient_or_insufficient = parsed_json.get("sufficient_or_insufficient", "sufficient")
interaction = parsed_json.get("interaction", "You need to provide more information.")
entity_name = []
entity_name.extend(entity_compound)
entity_name.extend(entity_atomic)
entity_name = entity_name[:6]
parsed_text_t = getattr(parse_outcome_t, "content", str(parse_outcome_t)).strip()
parsed_json_t = _extract_json_from_text(parsed_text_t)
parsed_triple = parsed_json_t.get("triple", {})
triple_subject = parsed_triple.get("subject","")
triple_predicate = parsed_triple.get("predicate","")
triple_object = parsed_triple.get("object","")
parsed_query = f"{triple_subject} {triple_predicate} {triple_object} "
logger.info(f"entity_name={entity_name},target_label={target_label}")
return {
"entity": entity_name,
"target_label": target_label,
"summarized_query": summarized_query,
"sufficient_or_insufficient": sufficient_or_insufficient,
"interaction" : interaction,
"parsed_query": parsed_query
}
except Exception as e:
logger.warning(f"JSON failed: {e}")
return {
"messages": [AIMessage(content="failed to parse query")],
}
def user_input(state: MyState, user_reply_text=None):
"""
在 Gradio 中进行交互:由前端传入 user_reply_text
"""
print("---NODE: user_input---")
interaction_content = state.get("interaction", "请补充输入信息")
ai_message = AIMessage(content=interaction_content)
print(f"AI: {ai_message.content}")
if not user_reply_text:
return {
"ai_message": ai_message.content,
"need_user_reply": True,
"messages": state.get("messages", []),
"user_reply": None
}
else:
return {
"ai_message": ai_message.content,
"need_user_reply": False,
"messages": state.get("messages", []) + [HumanMessage(content=user_reply_text)],
"user_reply": user_reply_text
}
def whether_to_interact(state):
"""判断是否需要与用户交互。"""
print("---EDGE: whether_to_interact---")
interaction = state.get("sufficient_or_insufficient")
print(f"interaction:{interaction}")
if interaction == "insufficient":
print("决策: 信息不足,需要用户输入。")
return "user_input"
elif interaction == "sufficient":
print("决策: 信息充分,进入Neo4j检索。")
return "kg_retrieval"
else:
return "stop_flow"
# 数据存放路径
DATA_DIR = "data"
os.makedirs(DATA_DIR, exist_ok=True)
# Hugging Face Dataset repo ID
REPO_ID = "achenyx1412/DGADIS"
# 需要下载的文件列表
FILES = [
"faiss_node+desc.index",
"faiss_node+desc.pkl",
"faiss_node.index",
"faiss_node.pkl",
"faiss_triple3.index",
"faiss_triple3.pkl",
"kg.gpickle",
"cengyongming.csv"
]
# 遍历文件,逐个下载
for file_name in FILES:
local_path = os.path.join(DATA_DIR, file_name)
# 如果本地已存在,则跳过下载
if os.path.exists(local_path):
print(f"✅ 已检测到本地文件 {file_name},跳过下载。")
continue
print(f"🌐 正在从 Hugging Face 下载 {file_name} ...")
try:
hf_hub_download(
repo_id=REPO_ID,
filename=file_name,
repo_type="dataset",
token=HF_TOKEN,
local_dir=DATA_DIR,
local_dir_use_symlinks=False # 防止 symlink 问题
)
print(f"✅ 已成功下载 {file_name}")
except Exception as e:
print(f"❌ 下载 {file_name} 失败: {e}")
def neo4j_retrieval(state: MyState):
logger.info("---NODE: neo4j_retrieval---")
#user_query = [message.content for message in state["messages"] if hasattr(message, 'content')]
#query_str = user_query[0]
#query_text = " ".join(query_str) if isinstance(query_str, list) else str(query_str)
query_text = state.get("summarized_query")
entity_list = state.get("entity", []) or []
target_labels = state.get("target_label", []) or []
parsed_query = state.get("parsed_query", "") or ""
topk = 5
depth = int(os.getenv("GRAPH_SEARCH_DEPTH", "2"))
if not entity_list or not target_labels:
return {"neo4j_retrieval": []}
index1 = faiss.read_index("data/faiss_node+desc.index")
with open("data/faiss_node+desc.pkl", "rb") as f:
metadata1 = pickle.load(f)
index2 = faiss.read_index("data/faiss_node.index")
with open("data/faiss_node.pkl", "rb") as f:
metadata2 = pickle.load(f)
index3 = faiss.read_index("data/faiss_triple3.index")
with open("data/faiss_triple3.pkl", "rb") as f:
metadata3 = pickle.load(f)
with open("data/kg.gpickle", "rb") as f:
G = pickle.load(f)
system_initialized = True
print("✅ System initialization completed!")
path_kv: Dict[str, str] = {}
for entity in entity_list:
try:
entity_embedding2 = embed_entity(parsed_query).reshape(1, -1)
D, I = index3.search(entity_embedding2, 5)
candidate_triples = [metadata3[idx] for idx in I[0]]
cand_info = [{
"head": cand.get("head", ""),
"head_desc": cand.get("head_desc", ""),
"rel": cand.get("rel", ""),
"rel_desc": cand.get("rel_desc", ""),
"rel_id": cand.get("rel_id", ""),
"tail": cand.get("tail", ""),
"tail_desc": cand.get("tail_desc", "")}
for cand in candidate_triples]
entity_embedding = embed_entity(entity).reshape(1, -1)
D1, I1 = index1.search(entity_embedding, topk)
candidates1 = [metadata1[idx] for idx in I1[0]]
D2, I2 = index2.search(entity_embedding, topk)
candidates2 = [metadata2[idx] for idx in I2[0]]
search_engine = NameSearchEngine('data/cengyongming.csv')
cand_names3 = search_engine.search(entity, topk=topk)
name_list = []
for cand in candidates1:
cand_id = cand["id"]
cand_name = cand["name"]
if cand_name not in G:
logger.warning(f"[WARN] {cand_name}) not in kg")
continue
if cand_name not in name_list:
name_list.append(cand_name)
logger.info(f"[INFO] node+desc {cand_name}) added to name_list")
for cand in candidates2:
cand_id = cand["id"]
cand_name = cand["name"]
if cand_name not in G:
logger.warning(f"[WARN] {cand_name}) not in kg")
continue
if cand_name not in name_list:
name_list.append(cand_name)
logger.info(f"[INFO] node {cand_name}) added to name_list")
for cand_name in cand_names3:
if cand_name not in G:
logger.warning(f"[WARN] {cand_name}) not in kg")
continue
if cand_name not in name_list:
name_list.append(cand_name)
logger.info(f"[INFO] name_search {cand_name}) added to name_list")
for cand_name in name_list:
try:
for target_label in target_labels:
neighbors = [
n for n, data in G.nodes(data=True)
if target_label in data.get("labels", [])
]
for nbr in neighbors:
if nx.has_path(G, cand_name, nbr):
path = nx.shortest_path(G, source=cand_name, target=nbr)
if len(path) - 1 <= depth:
parts_key = []
parts_val = []
for i, node in enumerate(path):
n_data = G.nodes[node]
n_name = n_data.get("name", "")
n_prop = json.dumps(
{k: v for k, v in n_data.items() if k in ["description"]},
ensure_ascii=False
)
if i == 0:
parts_val.append(f"[{n_name}:{n_prop}]")
else:
prev = path[i - 1]
edge_data = G.get_edge_data(prev, node) or {}
rel_type = edge_data.get("type", "")
rel_src = edge_data.get("chunk_id", "")
rel_text = edge_data.get("original_text", "")
parts_key.append(f"{rel_text}")
parts_val.append(f"--[{rel_type}:{rel_text}]-->[{n_name}:{n_prop}]")
path_key = ";".join(parts_key)
path_value = "".join(parts_val)
if path_key not in path_kv:
path_kv[path_key] = path_value
except Exception as e:
logger.warning(f"[WARN] BFS for candidate {cand_name} error: {e}")
continue
for i in cand_info:
path_key = f"{i['rel_desc']}"
path_value = f"[{i['head']}:{i['head_desc']}]--[{i['rel']}:{i['rel_desc']}]-->[{i['tail']}:{i['tail_desc']}]"
if path_key not in path_kv:
path_kv[path_key] = path_value
except Exception as e:
logger.warning(f"'{entity}'failed in faiss {e}")
continue
try:
query_inputs = bi_tokenizer(query_text, return_tensors="pt", truncation=True, max_length=512,padding=True)
with torch.no_grad():
query_emb = bi_model(**query_inputs).last_hidden_state[:, 0]
query_emb = F.normalize(query_emb, dim=-1)
path_keys = list(path_kv.keys())
batch_size = 32
all_cand_embs = []
with torch.no_grad():
for i in range(0, len(path_keys), batch_size):
batch = path_keys[i:i + batch_size]
cand_inputs = bi_tokenizer(batch, return_tensors="pt", truncation=True, max_length=512,padding=True)
cand_embs_batch = bi_model(**cand_inputs).last_hidden_state[:, 0]
cand_embs_batch = F.normalize(cand_embs_batch, dim=-1)
all_cand_embs.append(cand_embs_batch)
cand_embs = torch.cat(all_cand_embs, dim=0)
sim_scores = torch.matmul(query_emb, cand_embs.T).squeeze(0).tolist()
scored_paths = list(zip(path_keys, sim_scores))
scored_paths.sort(key=lambda x: x[1], reverse=True)
top100 = scored_paths[:100]
pairs = [(query_text, pk) for pk, _ in top100]
all_cross_scores = []
cross_batch_size = 16
with torch.no_grad():
for i in range(0, len(pairs), cross_batch_size):
batch_pairs = pairs[i:i + cross_batch_size]
inputs = cross_tokenizer(batch_pairs, padding=True, truncation=True, max_length=512,return_tensors="pt")
scores = cross_model(**inputs).logits.view(-1).tolist()
all_cross_scores.extend(scores)
rerank_final = list(zip([p[0] for p in top100], all_cross_scores))
rerank_final.sort(key=lambda x: x[1], reverse=True)
top30 = rerank_final[:30]
top30_values = [path_kv[pk] for pk, _ in top30]
logger.info(f"Cross-encoder reranked 30 path: {top30_values}")
return {"neo4j_retrieval": top30_values}
except Exception as e:
logger.warning(f"rerank error: {e}")
fallback_values = list(path_kv.values())[:50]
return {"neo4j_retrieval": fallback_values}
def decide_router(state: MyState) -> dict:
print("---EDGE: decide_router---")
neo4j_data = state.get("neo4j_retrieval")
query_string = state.get("summarized_query")
neo4j_retrieval = json.dumps(neo4j_data, ensure_ascii=False)
full_prompt = knowledge_router_prompt_en.format(
neo4j_retrieval=neo4j_retrieval,
query=query_string
)
total_tokens = len(encoding.encode(full_prompt))
if total_tokens > MAX_TOKENS:
neo4j_tokens = len(encoding.encode(neo4j_retrieval))
allowed_for_retrieval = MAX_TOKENS - total_tokens + neo4j_tokens
truncated_tokens = encoding.encode(neo4j_retrieval)[:allowed_for_retrieval]
neo4j_retrieval = encoding.decode(truncated_tokens)
print(f"Router prompt exceeded tokens")
try:
router_outcome = chain2.invoke({
"neo4j_retrieval": neo4j_retrieval,
"query": query_string
})
router_text = getattr(router_outcome, "content", str(router_outcome)).strip()
parsed_json = _extract_json_from_text(router_text)
decision = parsed_json.get("answer", "lack_knowledge")
if "sufficient_knowledge" in decision:
print("sufficient knowledge,generate answer directly")
return {"route": "llm_answer"}
else:
print("insufficient knowledge, api search")
pubmed_query = parsed_json.get("pubmed_search", query_string)
wikipedia_query = parsed_json.get("wikipedia_search", query_string)
if not pubmed_query:
print("llm failed to generate pubmed_query")
pubmed_query = query_string
if not wikipedia_query:
print("llm failed to generate wikipedia_query")
wikipedia_query = query_string
print(f"pubmed_query: {pubmed_query}")
print(f"wikipedia_query: {wikipedia_query}")
return {
"route": "api_search",
"pubmed_search": pubmed_query,
"wikipedia_search": wikipedia_query
}
except Exception as e:
print(f"Router error: {e}")
return {
"route": "api_search",
"pubmed_search": query_string,
"wikipedia_search": query_string
}
def api_search(state: MyState) -> dict:
logger.info("---NODE: api_search---")
pubmed_query = state.get("pubmed_search")
wikipedia_query = state.get("wikipedia_search")
pubmed_results = search_pubmed(pubmed_query)
wikipedia_results = search_wikipedia(wikipedia_query)
api_search_result = f"## PubMed Search Results:\n{pubmed_results}\n\n## Wikipedia Search Results:\n{wikipedia_results}"
logger.info(f"pubmed_results: {pubmed_results[:100]}\nwikipedia_results: {wikipedia_results[:100]}")
return {"api_search": api_search_result}
def llm_answer(state: MyState):
print("回答步骤")
neo4j_data = state.get("neo4j_retrieval")
neo4j_retrieval = json.dumps(neo4j_data, ensure_ascii=False)
api_search_result = state.get("api_search")
user_query = [message.content for message in state["messages"]]
query_string = user_query
prompt_base = final_answer_prompt_en.format(
neo4j_retrieval=neo4j_retrieval,
api_search_result=api_search_result,
query=query_string
)
base_tokens = len(encoding.encode(prompt_base))
neo4j_tokens = len(encoding.encode(neo4j_retrieval))
if MAX_TOKENS < base_tokens:
allowed_for_neo4j = neo4j_tokens - base_tokens + MAX_TOKENS
truncated_tokens = encoding.encode(neo4j_retrieval)[:allowed_for_neo4j]
neo4j_retrieval = encoding.decode(truncated_tokens)
print(f"Router prompt exceeded tokens")
final_answer = chain3.invoke({
"query": query_string,
"neo4j_retrieval": neo4j_retrieval,
"api_search_result": api_search_result
})
try:
final_answer_text = getattr(final_answer, "content", str(final_answer)).strip()
maybe_json = _extract_json_from_text(final_answer_text)
if maybe_json and isinstance(maybe_json, dict) and "answer" in maybe_json:
answer_content = maybe_json["answer"]
else:
answer_content = final_answer_text
except Exception as e:
print(f"final answer error: {e}")
answer_content = f"final answer error: {e}"
print(answer_content)
logger.info(f"Final answer: {answer_content}")
return {"llm_answer": answer_content }
# ======================== 数据加载 ========================
def build_graphrag_agent():
"""构建并返回编译好的 GraphRAG Agent"""
builder = StateGraph(MyState)
builder.add_node("parse_query", parse_query)
builder.add_node("user_input", user_input)
builder.add_node("kg_retrieval", neo4j_retrieval)
builder.add_node("decide_router", decide_router)
builder.add_node("api_search_tool", api_search)
builder.add_node("answer_query", llm_answer)
builder.add_edge(START, "parse_query")
builder.add_conditional_edges(
"parse_query",
whether_to_interact,
{
"user_input": "user_input",
"kg_retrieval": "kg_retrieval"
}
)
builder.add_edge("user_input", "parse_query")
builder.add_edge("kg_retrieval", "decide_router")
builder.add_conditional_edges(
"decide_router",
lambda state: state["route"],
{
"api_search": "api_search_tool",
"llm_answer": "answer_query"
}
)
builder.add_edge("api_search_tool", "answer_query")
builder.add_edge("answer_query", END)
return builder.compile()