Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,487 Bytes
e673944 2473931 1fcab49 663212e 1fcab49 663212e f828cc2 2473931 663212e ef52cd8 1fcab49 ef52cd8 2473931 ef52cd8 3d01d22 1fcab49 f828cc2 ef52cd8 663212e 8c2280a 663212e ef52cd8 663212e 1fcab49 663212e 1fcab49 663212e 1fcab49 ef52cd8 663212e ef52cd8 663212e ef52cd8 663212e ef52cd8 663212e ef52cd8 663212e 1fcab49 663212e ef52cd8 663212e ef52cd8 663212e 1fcab49 663212e 1fcab49 663212e 1fcab49 bfc1d04 2473931 1fcab49 2473931 1fcab49 8c2280a 1fcab49 8c2280a 663212e 2473931 1fcab49 1a91398 663212e 8c2280a 4ed82d8 663212e 8c2280a 663212e 2473931 4ed82d8 b01fe58 8c2280a 663212e 1fcab49 b01fe58 1fcab49 4ed82d8 1fcab49 b01fe58 2473931 663212e 8c2280a 2473931 663212e 2e25444 2473931 1fcab49 2473931 a6f47af 1fcab49 4e2a429 663212e a6f47af 663212e a6f47af 2473931 a6f47af 663212e a6f47af 2473931 1fcab49 663212e 2e25444 663212e 2e25444 663212e 2e25444 a6f47af 663212e a6f47af 2e25444 a6f47af 663212e 2e25444 a6f47af 663212e a6f47af 2473931 581cbb1 2473931 663212e a6f47af 663212e a6f47af 8c2280a a6f47af 2473931 1fcab49 663212e 1fcab49 663212e 1fcab49 8c2280a 663212e 1fcab49 663212e 1fcab49 663212e 1fcab49 663212e 1fcab49 663212e 1fcab49 663212e 1fcab49 663212e 1fcab49 663212e 32fd425 a6f47af 663212e 32fd425 663212e 2473931 663212e 8c2280a 663212e 8c2280a 2473931 581cbb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
import spaces
import gradio as gr
import torch
import numpy as np
import random
import time
import os
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from transformers import AutoTokenizer, Qwen3ForCausalLM
from controlnet_aux.processor import Processor
from PIL import Image
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download, snapshot_download
# Import pipeline and model
from videox_fun.pipeline import ZImageControlPipeline
from videox_fun.models import ZImageControlTransformer2DModel
# --- Configuration & Paths ---
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1280
# Hugging Face Repo IDs
MODEL_REPO = "Tongyi-MAI/Z-Image-Turbo"
CONTROLNET_REPO = "alibaba-pai/Z-Image-Turbo-Fun-Controlnet-Union"
CONTROLNET_FILENAME = "Z-Image-Turbo-Fun-Controlnet-Union.safetensors"
print(f"Loading Z-Image Turbo from {MODEL_REPO}...")
device = "cuda" if torch.cuda.is_available() else "cpu"
weight_dtype = torch.bfloat16
# --- FIX: Download Transformer Config & Weights Locally ---
print("Downloading transformer files...")
transformer_path = snapshot_download(
repo_id=MODEL_REPO,
allow_patterns=["transformer/*"],
local_dir="models/transformer",
local_dir_use_symlinks=False
)
local_transformer_path = os.path.join(transformer_path, "transformer")
if not os.path.exists(os.path.join(local_transformer_path, "config.json")):
local_transformer_path = transformer_path
print(f"Transformer files located at: {local_transformer_path}")
# --- 1. Load Transformer ---
print("Initializing Transformer...")
transformer = ZImageControlTransformer2DModel.from_pretrained(
local_transformer_path,
transformer_additional_kwargs={
"control_layers_places": [0, 5, 10, 15, 20, 25],
"control_in_dim": 16
},
).to(device, weight_dtype)
# --- 2. Download & Load ControlNet Weights ---
if not os.path.exists(CONTROLNET_FILENAME):
print(f"Downloading ControlNet weights from {CONTROLNET_REPO}...")
try:
CONTROLNET_WEIGHTS = hf_hub_download(
repo_id=CONTROLNET_REPO,
filename=CONTROLNET_FILENAME
)
except Exception as e:
print(f"Failed to download ControlNet weights: {e}")
CONTROLNET_WEIGHTS = None
else:
CONTROLNET_WEIGHTS = CONTROLNET_FILENAME
if CONTROLNET_WEIGHTS:
print(f"Loading ControlNet weights from {CONTROLNET_WEIGHTS}")
try:
state_dict = load_file(CONTROLNET_WEIGHTS)
state_dict = state_dict.get("state_dict", state_dict)
m, u = transformer.load_state_dict(state_dict, strict=False)
print(f"ControlNet Weights Loaded - Missing keys: {len(m)}, Unexpected keys: {len(u)}")
except Exception as e:
print(f"Error loading ControlNet weights: {e}")
else:
print("Warning: Running without explicit ControlNet weights.")
# --- 3. Load Core Components ---
print("Loading VAE, Tokenizer, and Text Encoder...")
vae = AutoencoderKL.from_pretrained(
MODEL_REPO,
subfolder="vae",
).to(device, weight_dtype)
tokenizer = AutoTokenizer.from_pretrained(
MODEL_REPO,
subfolder="tokenizer"
)
text_encoder = Qwen3ForCausalLM.from_pretrained(
MODEL_REPO,
subfolder="text_encoder",
torch_dtype=weight_dtype,
).to(device)
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
MODEL_REPO,
subfolder="scheduler"
)
# --- 4. Assemble Pipeline ---
pipe = ZImageControlPipeline(
vae=vae,
tokenizer=tokenizer,
text_encoder=text_encoder,
transformer=transformer,
scheduler=scheduler,
)
pipe.to(device, weight_dtype)
print(f"Model loaded successfully on {device}!")
# --- Helper Functions ---
def rescale_image(image, scale, divisible_by=16):
"""Rescale image and ensure dimensions are divisible by specified value."""
if image is None:
return None, 1024, 1024
width, height = image.size
new_width = int(width * scale)
new_height = int(height * scale)
new_width = (new_width // divisible_by) * divisible_by
new_height = (new_height // divisible_by) * divisible_by
if new_width > MAX_IMAGE_SIZE:
new_width = MAX_IMAGE_SIZE
if new_height > MAX_IMAGE_SIZE:
new_height = MAX_IMAGE_SIZE
resized = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
return resized, new_width, new_height
@spaces.GPU()
def generate_image(
prompt,
negative_prompt="blurry, ugly, bad quality",
input_image=None,
control_mode="Canny",
control_context_scale=0.75,
image_scale=1.0,
num_inference_steps=9,
guidance_scale=1.0,
seed=42,
randomize_seed=True,
progress=gr.Progress(track_tqdm=True)
):
if not prompt.strip():
raise gr.Error("Please enter a prompt to generate an image.")
# 1. Set Seed
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device).manual_seed(seed)
# 2. Process Control Image
if input_image is None:
raise gr.Error("Please upload a control image.")
progress(0.2, desc=f"Processing {control_mode}...")
processor_map = {
'Canny': 'canny',
'HED': 'softedge_hed',
'Depth': 'depth_midas',
'MLSD': 'mlsd',
'Pose': 'openpose_full'
}
processor_id = processor_map.get(control_mode, 'canny')
try:
processor = Processor(processor_id)
except Exception as e:
print(f"Failed to load processor {processor_id}, falling back to Canny. Error: {e}")
processor = Processor('canny')
control_image_rescaled, width, height = rescale_image(input_image, image_scale, 16)
# Run Processor
# We resize to 1024 temporarily for the preprocessor to work best, then resize back to target
temp_image = control_image_rescaled.resize((1024, 1024))
processed_image_pil = processor(temp_image, to_pil=True)
processed_image_pil = processed_image_pil.resize((width, height))
# 3. Generate
progress(0.5, desc="Generating...")
try:
# FIX: Pass the processed PIL image directly.
# The pipeline handles VAE encoding internally.
result = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
generator=generator,
guidance_scale=guidance_scale,
control_image=processed_image_pil,
num_inference_steps=num_inference_steps,
control_context_scale=control_context_scale,
)
image = result.images[0]
progress(1.0, desc="Complete!")
return image, seed, processed_image_pil
except Exception as e:
raise gr.Error(f"Generation failed: {str(e)}")
# --- UI Configuration (Apple Style) ---
apple_css = """
.gradio-container {
max-width: 1200px !important;
margin: 0 auto !important;
padding: 48px 20px !important;
font-family: -apple-system, BlinkMacSystemFont, 'Inter', 'Segoe UI', sans-serif !important;
}
.header-container { text-align: center; margin-bottom: 48px; }
.main-title {
font-size: 56px !important; font-weight: 600 !important;
letter-spacing: -0.02em !important; color: #1d1d1f !important;
margin: 0 0 12px 0 !important;
}
.subtitle {
font-size: 21px !important; color: #6e6e73 !important;
margin: 0 0 24px 0 !important;
}
.info-badge {
display: inline-block; background: #0071e3; color: white;
padding: 6px 16px; border-radius: 20px; font-size: 14px;
font-weight: 500; margin-bottom: 16px;
}
textarea {
font-size: 17px !important; border-radius: 12px !important;
border: 1px solid #d2d2d7 !important; padding: 12px 16px !important;
}
textarea:focus {
border-color: #0071e3 !important; box-shadow: 0 0 0 4px rgba(0, 113, 227, 0.15) !important;
outline: none !important;
}
button.primary {
font-size: 17px !important; padding: 12px 32px !important;
border-radius: 980px !important; background: #0071e3 !important;
border: none !important; color: #ffffff !important;
transition: all 0.2s ease !important;
}
button.primary:hover {
background: #0077ed !important; transform: scale(1.02) !important;
}
.footer-text {
text-align: center; margin-top: 48px; font-size: 14px !important;
color: #86868b !important;
}
"""
with gr.Blocks(title="Z-Image Turbo ControlNet") as demo:
gr.HTML("""
<div class="header-container">
<div class="info-badge">✓ ControlNet Union</div>
<h1 class="main-title">Z-Image Turbo</h1>
<p class="subtitle">Multi-Control Generation</p>
</div>
""")
with gr.Row():
# Left Input Column
with gr.Column(scale=1):
prompt = gr.Textbox(
label="Prompt",
placeholder="Describe the image you want to create...",
lines=3
)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="blurry, ugly, bad quality",
lines=1
)
input_image = gr.Image(
label="Control Image (Required)",
type="pil",
sources=['upload', 'clipboard'],
height=300
)
control_mode = gr.Radio(
choices=["Canny", "Depth", "HED", "MLSD", "Pose"],
value="Canny",
label="Control Mode",
info="Select the type of structure to extract"
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
num_inference_steps = gr.Slider(label="Steps", minimum=1, maximum=30, step=1, value=9)
guidance_scale = gr.Slider(label="Guidance", minimum=0.0, maximum=10.0, step=0.1, value=1.0)
with gr.Row():
control_context_scale = gr.Slider(label="Control Strength", minimum=0.0, maximum=1.0, step=0.01, value=0.75)
image_scale = gr.Slider(label="Image Scale", minimum=0.5, maximum=2.0, step=0.1, value=1.0)
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
generate_btn = gr.Button("Generate Image", variant="primary", elem_classes="primary")
# Right Output Column
with gr.Column(scale=1):
output_image = gr.Image(label="Generated Image", type="pil")
with gr.Accordion("Details & Debug", open=True):
with gr.Row():
seed_output = gr.Number(label="Seed Used", precision=0)
control_output = gr.Image(label="Preprocessor Output", type="pil")
# Footer
gr.HTML("""
<div class="footer-text">
Powered by Z-Image Turbo • VideoX-Fun • Tongyi-MAI
</div>
""")
# Event Wiring
generate_btn.click(
fn=generate_image,
inputs=[
prompt, negative_prompt, input_image, control_mode,
control_context_scale, image_scale, num_inference_steps,
guidance_scale, seed, randomize_seed
],
outputs=[output_image, seed_output, control_output]
)
if __name__ == "__main__":
demo.launch(share=False,
css=apple_css) |