Spaces:
Build error
Build error
Upload 10 files
Browse files- ensemble.py +13 -1
- full_chain.py +1 -1
- gradio_app.py +216 -0
- memory.py +0 -2
- requirements.txt +11 -11
ensemble.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import os
|
|
|
|
| 2 |
|
| 3 |
from langchain_community.retrievers import BM25Retriever, TavilySearchAPIRetriever
|
| 4 |
from langchain.retrievers import EnsembleRetriever
|
|
@@ -20,7 +21,7 @@ def ensemble_retriever_from_docs(docs, embeddings=None):
|
|
| 20 |
bm25_retriever = BM25Retriever.from_texts([t.page_content for t in texts])
|
| 21 |
|
| 22 |
# tavily_retriever = TavilySearchAPIRetriever(k=3, include_domains=['https://ilibrary.ru/text/107'])
|
| 23 |
-
tavily_retriever =
|
| 24 |
|
| 25 |
ensemble_retriever = EnsembleRetriever(
|
| 26 |
retrievers=[bm25_retriever, vs_retriever, tavily_retriever],
|
|
@@ -29,6 +30,17 @@ def ensemble_retriever_from_docs(docs, embeddings=None):
|
|
| 29 |
return ensemble_retriever
|
| 30 |
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
def main():
|
| 33 |
load_dotenv()
|
| 34 |
|
|
|
|
| 1 |
import os
|
| 2 |
+
import logging
|
| 3 |
|
| 4 |
from langchain_community.retrievers import BM25Retriever, TavilySearchAPIRetriever
|
| 5 |
from langchain.retrievers import EnsembleRetriever
|
|
|
|
| 21 |
bm25_retriever = BM25Retriever.from_texts([t.page_content for t in texts])
|
| 22 |
|
| 23 |
# tavily_retriever = TavilySearchAPIRetriever(k=3, include_domains=['https://ilibrary.ru/text/107'])
|
| 24 |
+
tavily_retriever = MyTavilySearchAPIRetriever(k=3, include_domains=['https://equitygroupholdings.com'])
|
| 25 |
|
| 26 |
ensemble_retriever = EnsembleRetriever(
|
| 27 |
retrievers=[bm25_retriever, vs_retriever, tavily_retriever],
|
|
|
|
| 30 |
return ensemble_retriever
|
| 31 |
|
| 32 |
|
| 33 |
+
class MyTavilySearchAPIRetriever(TavilySearchAPIRetriever):
|
| 34 |
+
def _get_relevant_documents(
|
| 35 |
+
self, query: str, *, run_manager
|
| 36 |
+
):
|
| 37 |
+
try:
|
| 38 |
+
return super()._get_relevant_documents(query, run_manager=run_manager)
|
| 39 |
+
except Exception as e:
|
| 40 |
+
logging.error(f"TavilySearch error: {e}")
|
| 41 |
+
return []
|
| 42 |
+
|
| 43 |
+
|
| 44 |
def main():
|
| 45 |
load_dotenv()
|
| 46 |
|
full_chain.py
CHANGED
|
@@ -44,7 +44,7 @@ def create_full_chain(retriever, openai_api_key=None):
|
|
| 44 |
|
| 45 |
def ask_question(chain, query, session_id):
|
| 46 |
# try:
|
| 47 |
-
logging.info(f"Send request: {query}")
|
| 48 |
response = chain.invoke(
|
| 49 |
{"question": query},
|
| 50 |
config={"configurable": {"session_id": session_id}}
|
|
|
|
| 44 |
|
| 45 |
def ask_question(chain, query, session_id):
|
| 46 |
# try:
|
| 47 |
+
# logging.info(f"Send request from session {session_id}: {query}")
|
| 48 |
response = chain.invoke(
|
| 49 |
{"question": query},
|
| 50 |
config={"configurable": {"session_id": session_id}}
|
gradio_app.py
ADDED
|
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import logging
|
| 4 |
+
from langchain_community.chat_message_histories import StreamlitChatMessageHistory
|
| 5 |
+
from langchain_community.embeddings import OpenAIEmbeddings, HuggingFaceEmbeddings
|
| 6 |
+
from langchain_community.retrievers import BM25Retriever
|
| 7 |
+
|
| 8 |
+
from ensemble import ensemble_retriever_from_docs
|
| 9 |
+
from full_chain import create_full_chain, ask_question
|
| 10 |
+
from local_loader import load_data_files, load_file
|
| 11 |
+
from vector_store import EmbeddingProxy
|
| 12 |
+
from memory import clean_session_history
|
| 13 |
+
from pathlib import Path
|
| 14 |
+
|
| 15 |
+
import gradio as gr
|
| 16 |
+
from langchain.chat_models import ChatOpenAI
|
| 17 |
+
from langchain.schema import AIMessage, HumanMessage
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
# Configure logging
|
| 21 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 22 |
+
|
| 23 |
+
def show_ui(message, history, request: gr.Request):
|
| 24 |
+
"""
|
| 25 |
+
Displays the Streamlit chat UI and handles user interactions.
|
| 26 |
+
|
| 27 |
+
Args:
|
| 28 |
+
qa: The LangChain chain for question answering.
|
| 29 |
+
prompt_to_user: The initial prompt to display to the user.
|
| 30 |
+
"""
|
| 31 |
+
global chain
|
| 32 |
+
session_id = request.session_hash
|
| 33 |
+
response = ask_question(chain, message, session_id)
|
| 34 |
+
# logging.info(f"Response: {response}")
|
| 35 |
+
return response.content
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def get_retriever(openai_api_key=None):
|
| 39 |
+
"""
|
| 40 |
+
Creates and caches the document retriever.
|
| 41 |
+
|
| 42 |
+
Args:
|
| 43 |
+
openai_api_key: The OpenAI API key.
|
| 44 |
+
|
| 45 |
+
Returns:
|
| 46 |
+
An ensemble document retriever.
|
| 47 |
+
"""
|
| 48 |
+
try:
|
| 49 |
+
docs = load_data_files(data_dir="data")
|
| 50 |
+
# embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key, model="text-embedding-3-small")
|
| 51 |
+
embeddings = HuggingFaceEmbeddings()
|
| 52 |
+
return ensemble_retriever_from_docs(docs, embeddings=embeddings)
|
| 53 |
+
except Exception as e:
|
| 54 |
+
logging.error(f"Error creating retriever: {e}")
|
| 55 |
+
logging.exception(f"message")
|
| 56 |
+
st.error("Error initializing the application. Please check the logs.")
|
| 57 |
+
st.stop() # Stop execution if retriever creation fails
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def get_chain(openai_api_key=None, huggingfacehub_api_token=None):
|
| 61 |
+
"""
|
| 62 |
+
Creates the question answering chain.
|
| 63 |
+
|
| 64 |
+
Args:
|
| 65 |
+
openai_api_key: The OpenAI API key.
|
| 66 |
+
huggingfacehub_api_token: The Hugging Face Hub API token.
|
| 67 |
+
|
| 68 |
+
Returns:
|
| 69 |
+
A LangChain question answering chain.
|
| 70 |
+
"""
|
| 71 |
+
try:
|
| 72 |
+
ensemble_retriever = get_retriever(openai_api_key=openai_api_key)
|
| 73 |
+
chain = create_full_chain(
|
| 74 |
+
ensemble_retriever,
|
| 75 |
+
openai_api_key=openai_api_key,
|
| 76 |
+
)
|
| 77 |
+
return ensemble_retriever, chain
|
| 78 |
+
except Exception as e:
|
| 79 |
+
logging.error(f"Error creating chain: {e}")
|
| 80 |
+
logging.exception(f"message")
|
| 81 |
+
st.error("Error initializing the application. Please check the logs.")
|
| 82 |
+
st.stop() # Stop execution if chain creation fails
|
| 83 |
+
|
| 84 |
+
def get_secret_or_input(secret_key, secret_name, info_link=None):
|
| 85 |
+
"""
|
| 86 |
+
Retrieves a secret from Streamlit secrets or prompts the user for input.
|
| 87 |
+
|
| 88 |
+
Args:
|
| 89 |
+
secret_key: The key of the secret in Streamlit secrets.
|
| 90 |
+
secret_name: The user-friendly name of the secret.
|
| 91 |
+
info_link: An optional link to provide information about the secret.
|
| 92 |
+
|
| 93 |
+
Returns:
|
| 94 |
+
The secret value.
|
| 95 |
+
"""
|
| 96 |
+
if secret_key in st.secrets:
|
| 97 |
+
st.write("Found %s secret" % secret_key)
|
| 98 |
+
secret_value = st.secrets[secret_key]
|
| 99 |
+
else:
|
| 100 |
+
st.write(f"Please provide your {secret_name}")
|
| 101 |
+
secret_value = st.text_input(secret_name, key=f"input_{secret_key}", type="password")
|
| 102 |
+
if secret_value:
|
| 103 |
+
st.session_state[secret_key] = secret_value
|
| 104 |
+
if info_link:
|
| 105 |
+
st.markdown(f"[Get an {secret_name}]({info_link})")
|
| 106 |
+
return secret_value
|
| 107 |
+
|
| 108 |
+
def process_uploaded_file(uploaded_file):
|
| 109 |
+
"""
|
| 110 |
+
Processes the uploaded file and adds it to the vector database.
|
| 111 |
+
|
| 112 |
+
Args:
|
| 113 |
+
uploaded_file: The uploaded file object from Streamlit.
|
| 114 |
+
openai_api_key: The OpenAI API key for embedding generation.
|
| 115 |
+
"""
|
| 116 |
+
# try:
|
| 117 |
+
if uploaded_file is not None:
|
| 118 |
+
logging.info(f'run upload {uploaded_file}')
|
| 119 |
+
|
| 120 |
+
if isinstance(uploaded_file, str):
|
| 121 |
+
filename = uploaded_file
|
| 122 |
+
else:
|
| 123 |
+
filename = str(uploaded_file.name)
|
| 124 |
+
|
| 125 |
+
# Load the document using the saved file path
|
| 126 |
+
docs = load_file(Path(filename))
|
| 127 |
+
|
| 128 |
+
global ensemble_retriever
|
| 129 |
+
global chain
|
| 130 |
+
|
| 131 |
+
all_docs = ensemble_retriever.retrievers[0].docs
|
| 132 |
+
all_docs.extend(docs)
|
| 133 |
+
|
| 134 |
+
ensemble_retriever.retrievers[1].add_documents(docs)
|
| 135 |
+
|
| 136 |
+
new_bm25 = BM25Retriever.from_texts([t.page_content for t in all_docs])
|
| 137 |
+
|
| 138 |
+
ensemble_retriever.retrievers[0] = new_bm25
|
| 139 |
+
|
| 140 |
+
chain = create_full_chain(
|
| 141 |
+
ensemble_retriever,
|
| 142 |
+
openai_api_key=open_api_key,
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
logging.info("File uploaded and added to the knowledge base!")
|
| 146 |
+
gr.Info('File uploaded and added to the knowledge base!', duration=3)
|
| 147 |
+
|
| 148 |
+
return None
|
| 149 |
+
|
| 150 |
+
# except Exception as e:
|
| 151 |
+
# logging.error(f"Error processing uploaded file: {e}")
|
| 152 |
+
# st.error("Error processing the file. Please check the logs.")
|
| 153 |
+
|
| 154 |
+
SUPPORTED_FORMATS = ['.txt', '.json', '.pdf']
|
| 155 |
+
|
| 156 |
+
def activate():
|
| 157 |
+
return gr.update(interactive=True)
|
| 158 |
+
|
| 159 |
+
def deactivate():
|
| 160 |
+
return gr.update(interactive=False)
|
| 161 |
+
|
| 162 |
+
def reset(z, request: gr.Request):
|
| 163 |
+
session_id = request.session_hash
|
| 164 |
+
clean_session_history(session_id)
|
| 165 |
+
return [], []
|
| 166 |
+
|
| 167 |
+
def main():
|
| 168 |
+
with gr.Blocks() as demo:
|
| 169 |
+
gr.Markdown(
|
| 170 |
+
"# Equity Bank AI assistant \n"
|
| 171 |
+
"Ask questions about Equity Bank's products and services:"
|
| 172 |
+
)
|
| 173 |
+
with gr.Tab('Chat'):
|
| 174 |
+
clean_btn = gr.Button(value="Clean history", variant="secondary", size='sm', render=False)
|
| 175 |
+
bot = gr.Chatbot(elem_id="chatbot", render=False)
|
| 176 |
+
|
| 177 |
+
chat = gr.ChatInterface(
|
| 178 |
+
show_ui,
|
| 179 |
+
chatbot=bot,
|
| 180 |
+
undo_btn=None,
|
| 181 |
+
retry_btn=None,
|
| 182 |
+
clear_btn=clean_btn,
|
| 183 |
+
)
|
| 184 |
+
with gr.Tab('Documents'):
|
| 185 |
+
file_input = gr.File(
|
| 186 |
+
label=f'{", ".join([str(f) for f in SUPPORTED_FORMATS])}',
|
| 187 |
+
file_types=SUPPORTED_FORMATS,
|
| 188 |
+
)
|
| 189 |
+
submit_btn = gr.Button(value="Index file", variant="primary", interactive=False)
|
| 190 |
+
|
| 191 |
+
clean_btn.click(fn=reset, inputs=clean_btn, outputs=[bot, chat.chatbot_state])
|
| 192 |
+
|
| 193 |
+
submit_btn.click(
|
| 194 |
+
fn=process_uploaded_file,
|
| 195 |
+
inputs=file_input,
|
| 196 |
+
outputs=file_input,
|
| 197 |
+
api_name="Index file"
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
file_input.upload(fn=activate, outputs=[submit_btn])
|
| 201 |
+
file_input.clear(fn=deactivate, outputs=[submit_btn])
|
| 202 |
+
|
| 203 |
+
demo.launch(share=True)
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
open_api_key = os.getenv('OPEN_API_KEY')
|
| 207 |
+
|
| 208 |
+
ensemble_retriever, chain = get_chain(
|
| 209 |
+
openai_api_key=open_api_key,
|
| 210 |
+
huggingfacehub_api_token=None
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
if __name__ == "__main__":
|
| 216 |
+
main()
|
memory.py
CHANGED
|
@@ -39,8 +39,6 @@ def create_memory_chain(llm, base_chain):
|
|
| 39 |
if session_id not in store:
|
| 40 |
store[session_id] = ChatMessageHistory()
|
| 41 |
|
| 42 |
-
logging.info(str(store))
|
| 43 |
-
|
| 44 |
return store[session_id]
|
| 45 |
|
| 46 |
with_message_history = RunnableWithMessageHistory(
|
|
|
|
| 39 |
if session_id not in store:
|
| 40 |
store[session_id] = ChatMessageHistory()
|
| 41 |
|
|
|
|
|
|
|
| 42 |
return store[session_id]
|
| 43 |
|
| 44 |
with_message_history = RunnableWithMessageHistory(
|
requirements.txt
CHANGED
|
@@ -1,11 +1,11 @@
|
|
| 1 |
-
chromadb
|
| 2 |
-
huggingface-hub
|
| 3 |
-
langchain
|
| 4 |
-
langchain-community
|
| 5 |
-
langchain-openai
|
| 6 |
-
sentence-transformers
|
| 7 |
-
streamlit
|
| 8 |
-
gradio
|
| 9 |
-
pypdf
|
| 10 |
-
rank_bm25
|
| 11 |
-
tavily-python
|
|
|
|
| 1 |
+
chromadb==0.5.5
|
| 2 |
+
huggingface-hub==0.24.6
|
| 3 |
+
langchain==0.2.14
|
| 4 |
+
langchain-community==0.2.12
|
| 5 |
+
langchain-openai==0.1.22
|
| 6 |
+
sentence-transformers==3.0.1
|
| 7 |
+
streamlit==1.37.1
|
| 8 |
+
gradio==4.41.0
|
| 9 |
+
pypdf==4.3.1
|
| 10 |
+
rank_bm25==0.2.2
|
| 11 |
+
tavily-python==0.4.0
|