Spaces:
Runtime error
Runtime error
File size: 17,343 Bytes
73fe9ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
# flake8: noqa E501
# Copyright (c) 2025 ByteDance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict as TyDict
from typing import List, Sequence, Tuple
import torch
import torch.nn as nn
from addict import Dict
from einops import rearrange
from depth_anything_3.model.utils.head_utils import (
Permute,
create_uv_grid,
custom_interpolate,
position_grid_to_embed,
)
class DPT(nn.Module):
"""
DPT for dense prediction (main head + optional sky head, sky always 1 channel).
Returns:
- Main head:
* If output_dim>1: { head_name, f"{head_name}_conf" }
* If output_dim==1: { head_name }
- Sky head (if use_sky_head=True): { sky_name } # [B, S, 1, H/down_ratio, W/down_ratio]
"""
def __init__(
self,
dim_in: int,
*,
patch_size: int = 14,
output_dim: int = 1,
activation: str = "exp",
conf_activation: str = "expp1",
features: int = 256,
out_channels: Sequence[int] = (256, 512, 1024, 1024),
pos_embed: bool = False,
down_ratio: int = 1,
head_name: str = "depth",
# ---- sky head (fixed 1 channel) ----
use_sky_head: bool = True,
sky_name: str = "sky",
sky_activation: str = "relu", # 'sigmoid' / 'relu' / 'linear'
use_ln_for_heads: bool = False, # If needed, apply LayerNorm on intermediate features of both heads
norm_type: str = "idt", # use to match legacy GS-DPT head, "idt" / "layer"
fusion_block_inplace: bool = False,
) -> None:
super().__init__()
# -------------------- configuration --------------------
self.patch_size = patch_size
self.activation = activation
self.conf_activation = conf_activation
self.pos_embed = pos_embed
self.down_ratio = down_ratio
# Names
self.head_main = head_name
self.sky_name = sky_name
# Main head: output dimension and confidence switch
self.out_dim = output_dim
self.has_conf = output_dim > 1
# Sky head parameters (always 1 channel)
self.use_sky_head = use_sky_head
self.sky_activation = sky_activation
# Fixed 4 intermediate outputs
self.intermediate_layer_idx: Tuple[int, int, int, int] = (0, 1, 2, 3)
# -------------------- token pre-norm + per-stage projection --------------------
if norm_type == "layer":
self.norm = nn.LayerNorm(dim_in)
elif norm_type == "idt":
self.norm = nn.Identity()
else:
raise Exception(f"Unknown norm_type {norm_type}, should be 'layer' or 'idt'.")
self.projects = nn.ModuleList(
[nn.Conv2d(dim_in, oc, kernel_size=1, stride=1, padding=0) for oc in out_channels]
)
# -------------------- Spatial re-size (align to common scale before fusion) --------------------
# Design consistent with original: relative to patch grid (x4, x2, x1, /2)
self.resize_layers = nn.ModuleList(
[
nn.ConvTranspose2d(
out_channels[0], out_channels[0], kernel_size=4, stride=4, padding=0
),
nn.ConvTranspose2d(
out_channels[1], out_channels[1], kernel_size=2, stride=2, padding=0
),
nn.Identity(),
nn.Conv2d(out_channels[3], out_channels[3], kernel_size=3, stride=2, padding=1),
]
)
# -------------------- scratch: stage adapters + main fusion chain --------------------
self.scratch = _make_scratch(list(out_channels), features, expand=False)
# Main fusion chain
self.scratch.refinenet1 = _make_fusion_block(features, inplace=fusion_block_inplace)
self.scratch.refinenet2 = _make_fusion_block(features, inplace=fusion_block_inplace)
self.scratch.refinenet3 = _make_fusion_block(features, inplace=fusion_block_inplace)
self.scratch.refinenet4 = _make_fusion_block(
features, has_residual=False, inplace=fusion_block_inplace
)
# Heads (shared neck1; then split into two heads)
head_features_1 = features
head_features_2 = 32
self.scratch.output_conv1 = nn.Conv2d(
head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1
)
ln_seq = (
[Permute((0, 2, 3, 1)), nn.LayerNorm(head_features_2), Permute((0, 3, 1, 2))]
if use_ln_for_heads
else []
)
# Main head
self.scratch.output_conv2 = nn.Sequential(
nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1),
*ln_seq,
nn.ReLU(inplace=True),
nn.Conv2d(head_features_2, output_dim, kernel_size=1, stride=1, padding=0),
)
# Sky head (fixed 1 channel)
if self.use_sky_head:
self.scratch.sky_output_conv2 = nn.Sequential(
nn.Conv2d(
head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1
),
*ln_seq,
nn.ReLU(inplace=True),
nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0),
)
# -------------------------------------------------------------------------
# Public forward (supports frame chunking to save memory)
# -------------------------------------------------------------------------
def forward(
self,
feats: List[torch.Tensor],
H: int,
W: int,
patch_start_idx: int,
chunk_size: int = 8,
**kwargs,
) -> Dict:
"""
Args:
feats: List of 4 entries, each entry is a tensor like [B, S, T, C] (or the 0th element of tuple/list is that tensor).
H, W: Original image dimensions
patch_start_idx: Starting index of patch tokens in sequence (for cropping non-patch tokens)
chunk_size: Chunk size along time dimension S
Returns:
Dict[str, Tensor]
"""
B, S, N, C = feats[0][0].shape
feats = [feat[0].reshape(B * S, N, C) for feat in feats]
# update image info, used by the GS-DPT head
extra_kwargs = {}
if "images" in kwargs:
extra_kwargs.update({"images": rearrange(kwargs["images"], "B S ... -> (B S) ...")})
if chunk_size is None or chunk_size >= S:
out_dict = self._forward_impl(feats, H, W, patch_start_idx, **extra_kwargs)
out_dict = {k: v.view(B, S, *v.shape[1:]) for k, v in out_dict.items()}
return Dict(out_dict)
out_dicts: List[TyDict[str, torch.Tensor]] = []
for s0 in range(0, S, chunk_size):
s1 = min(s0 + chunk_size, S)
kw = {}
if "images" in extra_kwargs:
kw.update({"images": extra_kwargs["images"][s0:s1]})
out_dicts.append(
self._forward_impl([f[s0:s1] for f in feats], H, W, patch_start_idx, **kw)
)
out_dict = {k: torch.cat([od[k] for od in out_dicts], dim=0) for k in out_dicts[0].keys()}
out_dict = {k: v.view(B, S, *v.shape[1:]) for k, v in out_dict.items()}
return Dict(out_dict)
# -------------------------------------------------------------------------
# Internal forward (single chunk)
# -------------------------------------------------------------------------
def _forward_impl(
self,
feats: List[torch.Tensor],
H: int,
W: int,
patch_start_idx: int,
) -> TyDict[str, torch.Tensor]:
B, _, C = feats[0].shape
ph, pw = H // self.patch_size, W // self.patch_size
resized_feats = []
for stage_idx, take_idx in enumerate(self.intermediate_layer_idx):
x = feats[take_idx][:, patch_start_idx:] # [B*S, N_patch, C]
x = self.norm(x)
x = x.permute(0, 2, 1).reshape(B, C, ph, pw) # [B*S, C, ph, pw]
x = self.projects[stage_idx](x)
if self.pos_embed:
x = self._add_pos_embed(x, W, H)
x = self.resize_layers[stage_idx](x) # Align scale
resized_feats.append(x)
# 2) Fusion pyramid (main branch only)
fused = self._fuse(resized_feats)
# 3) Upsample to target resolution, optionally add position encoding again
h_out = int(ph * self.patch_size / self.down_ratio)
w_out = int(pw * self.patch_size / self.down_ratio)
fused = self.scratch.output_conv1(fused)
fused = custom_interpolate(fused, (h_out, w_out), mode="bilinear", align_corners=True)
if self.pos_embed:
fused = self._add_pos_embed(fused, W, H)
# 4) Shared neck1
feat = fused
# 5) Main head: logits -> activation
main_logits = self.scratch.output_conv2(feat)
outs: TyDict[str, torch.Tensor] = {}
if self.has_conf:
fmap = main_logits.permute(0, 2, 3, 1)
pred = self._apply_activation_single(fmap[..., :-1], self.activation)
conf = self._apply_activation_single(fmap[..., -1], self.conf_activation)
outs[self.head_main] = pred.squeeze(1)
outs[f"{self.head_main}_conf"] = conf.squeeze(1)
else:
outs[self.head_main] = self._apply_activation_single(
main_logits, self.activation
).squeeze(1)
# 6) Sky head (fixed 1 channel)
if self.use_sky_head:
sky_logits = self.scratch.sky_output_conv2(feat)
outs[self.sky_name] = self._apply_sky_activation(sky_logits).squeeze(1)
return outs
# -------------------------------------------------------------------------
# Subroutines
# -------------------------------------------------------------------------
def _fuse(self, feats: List[torch.Tensor]) -> torch.Tensor:
"""
4-layer top-down fusion, returns finest scale features (after fusion, before neck1).
"""
l1, l2, l3, l4 = feats
l1_rn = self.scratch.layer1_rn(l1)
l2_rn = self.scratch.layer2_rn(l2)
l3_rn = self.scratch.layer3_rn(l3)
l4_rn = self.scratch.layer4_rn(l4)
# 4 -> 3 -> 2 -> 1
out = self.scratch.refinenet4(l4_rn, size=l3_rn.shape[2:])
out = self.scratch.refinenet3(out, l3_rn, size=l2_rn.shape[2:])
out = self.scratch.refinenet2(out, l2_rn, size=l1_rn.shape[2:])
out = self.scratch.refinenet1(out, l1_rn)
return out
def _apply_activation_single(
self, x: torch.Tensor, activation: str = "linear"
) -> torch.Tensor:
"""
Apply activation to single channel output, maintaining semantic consistency with value branch in multi-channel case.
Supports: exp / relu / sigmoid / softplus / tanh / linear / expp1
"""
act = activation.lower() if isinstance(activation, str) else activation
if act == "exp":
return torch.exp(x)
if act == "expp1":
return torch.exp(x) + 1
if act == "expm1":
return torch.expm1(x)
if act == "relu":
return torch.relu(x)
if act == "sigmoid":
return torch.sigmoid(x)
if act == "softplus":
return torch.nn.functional.softplus(x)
if act == "tanh":
return torch.tanh(x)
# Default linear
return x
def _apply_sky_activation(self, x: torch.Tensor) -> torch.Tensor:
"""
Sky head activation (fixed 1 channel):
* 'sigmoid' -> Sigmoid probability map
* 'relu' -> ReLU positive domain output
* 'linear' -> Original value (logits)
"""
act = (
self.sky_activation.lower()
if isinstance(self.sky_activation, str)
else self.sky_activation
)
if act == "sigmoid":
return torch.sigmoid(x)
if act == "relu":
return torch.relu(x)
# 'linear'
return x
def _add_pos_embed(self, x: torch.Tensor, W: int, H: int, ratio: float = 0.1) -> torch.Tensor:
"""Simple UV position encoding directly added to feature map."""
pw, ph = x.shape[-1], x.shape[-2]
pe = create_uv_grid(pw, ph, aspect_ratio=W / H, dtype=x.dtype, device=x.device)
pe = position_grid_to_embed(pe, x.shape[1]) * ratio
pe = pe.permute(2, 0, 1)[None].expand(x.shape[0], -1, -1, -1)
return x + pe
# -----------------------------------------------------------------------------
# Building blocks (preserved, consistent with original)
# -----------------------------------------------------------------------------
def _make_fusion_block(
features: int,
size: Tuple[int, int] = None,
has_residual: bool = True,
groups: int = 1,
inplace: bool = False,
) -> nn.Module:
return FeatureFusionBlock(
features=features,
activation=nn.ReLU(inplace=inplace),
deconv=False,
bn=False,
expand=False,
align_corners=True,
size=size,
has_residual=has_residual,
groups=groups,
)
def _make_scratch(
in_shape: List[int], out_shape: int, groups: int = 1, expand: bool = False
) -> nn.Module:
scratch = nn.Module()
# Optional expansion by stage
c1 = out_shape
c2 = out_shape * (2 if expand else 1)
c3 = out_shape * (4 if expand else 1)
c4 = out_shape * (8 if expand else 1)
scratch.layer1_rn = nn.Conv2d(in_shape[0], c1, 3, 1, 1, bias=False, groups=groups)
scratch.layer2_rn = nn.Conv2d(in_shape[1], c2, 3, 1, 1, bias=False, groups=groups)
scratch.layer3_rn = nn.Conv2d(in_shape[2], c3, 3, 1, 1, bias=False, groups=groups)
scratch.layer4_rn = nn.Conv2d(in_shape[3], c4, 3, 1, 1, bias=False, groups=groups)
return scratch
class ResidualConvUnit(nn.Module):
"""Lightweight residual convolution block for fusion"""
def __init__(self, features: int, activation: nn.Module, bn: bool, groups: int = 1) -> None:
super().__init__()
self.bn = bn
self.groups = groups
self.conv1 = nn.Conv2d(features, features, 3, 1, 1, bias=True, groups=groups)
self.conv2 = nn.Conv2d(features, features, 3, 1, 1, bias=True, groups=groups)
self.norm1 = None
self.norm2 = None
self.activation = activation
self.skip_add = nn.quantized.FloatFunctional()
def forward(self, x: torch.Tensor) -> torch.Tensor: # type: ignore[override]
out = self.activation(x)
out = self.conv1(out)
if self.norm1 is not None:
out = self.norm1(out)
out = self.activation(out)
out = self.conv2(out)
if self.norm2 is not None:
out = self.norm2(out)
return self.skip_add.add(out, x)
class FeatureFusionBlock(nn.Module):
"""Top-down fusion block: (optional) residual merge + upsampling + 1x1 contraction"""
def __init__(
self,
features: int,
activation: nn.Module,
deconv: bool = False,
bn: bool = False,
expand: bool = False,
align_corners: bool = True,
size: Tuple[int, int] = None,
has_residual: bool = True,
groups: int = 1,
) -> None:
super().__init__()
self.align_corners = align_corners
self.size = size
self.has_residual = has_residual
self.resConfUnit1 = (
ResidualConvUnit(features, activation, bn, groups=groups) if has_residual else None
)
self.resConfUnit2 = ResidualConvUnit(features, activation, bn, groups=groups)
out_features = (features // 2) if expand else features
self.out_conv = nn.Conv2d(features, out_features, 1, 1, 0, bias=True, groups=groups)
self.skip_add = nn.quantized.FloatFunctional()
def forward(self, *xs: torch.Tensor, size: Tuple[int, int] = None) -> torch.Tensor: # type: ignore[override]
"""
xs:
- xs[0]: Top branch input
- xs[1]: Lateral input (can do residual addition with top branch)
"""
y = xs[0]
if self.has_residual and len(xs) > 1 and self.resConfUnit1 is not None:
y = self.skip_add.add(y, self.resConfUnit1(xs[1]))
y = self.resConfUnit2(y)
# Upsampling
if (size is None) and (self.size is None):
up_kwargs = {"scale_factor": 2}
elif size is None:
up_kwargs = {"size": self.size}
else:
up_kwargs = {"size": size}
y = custom_interpolate(y, **up_kwargs, mode="bilinear", align_corners=self.align_corners)
y = self.out_conv(y)
return y |