Spaces:
Runtime error
Runtime error
File size: 19,567 Bytes
73fe9ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
# flake8: noqa E501
# Copyright (c) 2025 ByteDance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Sequence, Tuple
import torch
import torch.nn as nn
from addict import Dict
from depth_anything_3.model.dpt import _make_fusion_block, _make_scratch
from depth_anything_3.model.utils.head_utils import (
Permute,
create_uv_grid,
custom_interpolate,
position_grid_to_embed,
)
class DualDPT(nn.Module):
"""
Dual-head DPT for dense prediction with an always-on auxiliary head.
Architectural notes:
- Sky/object branches are removed.
- `intermediate_layer_idx` is fixed to (0, 1, 2, 3).
- Auxiliary head has its **own** fusion blocks (no fusion_inplace / no sharing).
- Auxiliary head is internally multi-level; **only the final level** is returned.
- Returns a **dict** with keys from `head_names`, e.g.:
{ main_name, f"{main_name}_conf", aux_name, f"{aux_name}_conf" }
- `feature_only` is fixed to False.
"""
def __init__(
self,
dim_in: int,
*,
patch_size: int = 14,
output_dim: int = 2,
activation: str = "exp",
conf_activation: str = "expp1",
features: int = 256,
out_channels: Sequence[int] = (256, 512, 1024, 1024),
pos_embed: bool = True,
down_ratio: int = 1,
aux_pyramid_levels: int = 4,
aux_out1_conv_num: int = 5,
head_names: Tuple[str, str] = ("depth", "ray"),
) -> None:
super().__init__()
# -------------------- configuration --------------------
self.patch_size = patch_size
self.activation = activation
self.conf_activation = conf_activation
self.pos_embed = pos_embed
self.down_ratio = down_ratio
self.aux_levels = aux_pyramid_levels
self.aux_out1_conv_num = aux_out1_conv_num
# names ONLY come from config (no hard-coded strings elsewhere)
self.head_main, self.head_aux = head_names
# Always expect 4 scales; enforce intermediate idx = (0, 1, 2, 3)
self.intermediate_layer_idx: Tuple[int, int, int, int] = (0, 1, 2, 3)
# -------------------- token pre-norm + per-stage projection --------------------
self.norm = nn.LayerNorm(dim_in)
self.projects = nn.ModuleList(
[nn.Conv2d(dim_in, oc, kernel_size=1, stride=1, padding=0) for oc in out_channels]
)
# -------------------- spatial re-sizers (align to common scale before fusion) --------------------
# design: stage strides (x4, x2, x1, /2) relative to patch grid to align to a common pivot scale
self.resize_layers = nn.ModuleList(
[
nn.ConvTranspose2d(
out_channels[0], out_channels[0], kernel_size=4, stride=4, padding=0
),
nn.ConvTranspose2d(
out_channels[1], out_channels[1], kernel_size=2, stride=2, padding=0
),
nn.Identity(),
nn.Conv2d(out_channels[3], out_channels[3], kernel_size=3, stride=2, padding=1),
]
)
# -------------------- scratch: stage adapters + fusion (main & aux are separate) --------------------
self.scratch = _make_scratch(list(out_channels), features, expand=False)
# Main fusion chain (independent)
self.scratch.refinenet1 = _make_fusion_block(features)
self.scratch.refinenet2 = _make_fusion_block(features)
self.scratch.refinenet3 = _make_fusion_block(features)
self.scratch.refinenet4 = _make_fusion_block(features, has_residual=False)
# Primary head neck + head (independent)
head_features_1 = features
head_features_2 = 32
self.scratch.output_conv1 = nn.Conv2d(
head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1
)
self.scratch.output_conv2 = nn.Sequential(
nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(head_features_2, output_dim, kernel_size=1, stride=1, padding=0),
)
# Auxiliary fusion chain (completely separate; no sharing, i.e., "fusion_inplace=False")
self.scratch.refinenet1_aux = _make_fusion_block(features)
self.scratch.refinenet2_aux = _make_fusion_block(features)
self.scratch.refinenet3_aux = _make_fusion_block(features)
self.scratch.refinenet4_aux = _make_fusion_block(features, has_residual=False)
# Aux pre-head per level (we will only *return final level*)
self.scratch.output_conv1_aux = nn.ModuleList(
[self._make_aux_out1_block(head_features_1) for _ in range(self.aux_levels)]
)
# Aux final projection per level
use_ln = True
ln_seq = (
[Permute((0, 2, 3, 1)), nn.LayerNorm(head_features_2), Permute((0, 3, 1, 2))]
if use_ln
else []
)
self.scratch.output_conv2_aux = nn.ModuleList(
[
nn.Sequential(
nn.Conv2d(
head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1
),
*ln_seq,
nn.ReLU(inplace=True),
nn.Conv2d(head_features_2, 7, kernel_size=1, stride=1, padding=0),
)
for _ in range(self.aux_levels)
]
)
# -------------------------------------------------------------------------
# Public forward (supports frame chunking for memory)
# -------------------------------------------------------------------------
def forward(
self,
feats: List[torch.Tensor],
H: int,
W: int,
patch_start_idx: int,
chunk_size: int = 8,
) -> Dict[str, torch.Tensor]:
"""
Args:
aggregated_tokens_list: List of 4 tensors [B, S, T, C] from transformer.
images: [B, S, 3, H, W], in [0, 1].
patch_start_idx: Patch-token start in the token sequence (to drop non-patch tokens).
frames_chunk_size: Optional chunking along S for memory.
Returns:
Dict[str, Tensor] with keys based on `head_names`, e.g.:
self.head_main, f"{self.head_main}_conf",
self.head_aux, f"{self.head_aux}_conf"
Shapes:
main: [B, S, out_dim, H/down_ratio, W/down_ratio]
main_cf: [B, S, 1, H/down_ratio, W/down_ratio]
aux: [B, S, 7, H/down_ratio, W/down_ratio]
aux_cf: [B, S, 1, H/down_ratio, W/down_ratio]
"""
B, S, N, C = feats[0][0].shape
feats = [feat[0].reshape(B * S, N, C) for feat in feats]
if chunk_size is None or chunk_size >= S:
out_dict = self._forward_impl(feats, H, W, patch_start_idx)
out_dict = {k: v.reshape(B, S, *v.shape[1:]) for k, v in out_dict.items()}
return Dict(out_dict)
out_dicts = []
for s0 in range(0, S, chunk_size):
s1 = min(s0 + chunk_size, S)
out_dict = self._forward_impl(
[feat[s0:s1] for feat in feats],
H,
W,
patch_start_idx,
)
out_dicts.append(out_dict)
out_dict = {
k: torch.cat([out_dict[k] for out_dict in out_dicts], dim=0)
for k in out_dicts[0].keys()
}
out_dict = {k: v.view(B, S, *v.shape[1:]) for k, v in out_dict.items()}
return Dict(out_dict)
# -------------------------------------------------------------------------
# Internal forward (single chunk)
# -------------------------------------------------------------------------
def _forward_impl(
self,
feats: List[torch.Tensor],
H: int,
W: int,
patch_start_idx: int,
) -> Dict[str, torch.Tensor]:
B, _, C = feats[0].shape
ph, pw = H // self.patch_size, W // self.patch_size
resized_feats = []
for stage_idx, take_idx in enumerate(self.intermediate_layer_idx):
x = feats[take_idx][:, patch_start_idx:]
x = self.norm(x)
x = x.permute(0, 2, 1).reshape(B, C, ph, pw) # [B*S, C, ph, pw]
x = self.projects[stage_idx](x)
if self.pos_embed:
x = self._add_pos_embed(x, W, H)
x = self.resize_layers[stage_idx](x) # align scales
resized_feats.append(x)
# 2) Fuse pyramid (main & aux are completely independent)
fused_main, fused_aux_pyr = self._fuse(resized_feats)
# 3) Upsample to target resolution and (optional) add pos-embed again
h_out = int(ph * self.patch_size / self.down_ratio)
w_out = int(pw * self.patch_size / self.down_ratio)
fused_main = custom_interpolate(
fused_main, (h_out, w_out), mode="bilinear", align_corners=True
)
if self.pos_embed:
fused_main = self._add_pos_embed(fused_main, W, H)
# Primary head: conv1 -> conv2 -> activate
# fused_main = self.scratch.output_conv1(fused_main)
main_logits = self.scratch.output_conv2(fused_main)
fmap = main_logits.permute(0, 2, 3, 1)
main_pred = self._apply_activation_single(fmap[..., :-1], self.activation)
main_conf = self._apply_activation_single(fmap[..., -1], self.conf_activation)
# Auxiliary head (multi-level inside) -> only last level returned (after activation)
last_aux = fused_aux_pyr[-1]
if self.pos_embed:
last_aux = self._add_pos_embed(last_aux, W, H)
# neck (per-level pre-conv) then final projection (only for last level)
# last_aux = self.scratch.output_conv1_aux[-1](last_aux)
last_aux_logits = self.scratch.output_conv2_aux[-1](last_aux)
fmap_last = last_aux_logits.permute(0, 2, 3, 1)
aux_pred = self._apply_activation_single(fmap_last[..., :-1], "linear")
aux_conf = self._apply_activation_single(fmap_last[..., -1], self.conf_activation)
return {
self.head_main: main_pred.squeeze(-1),
f"{self.head_main}_conf": main_conf,
self.head_aux: aux_pred,
f"{self.head_aux}_conf": aux_conf,
}
# -------------------------------------------------------------------------
# Subroutines
# -------------------------------------------------------------------------
def _fuse(self, feats: List[torch.Tensor]) -> Tuple[torch.Tensor, List[torch.Tensor]]:
"""
Feature pyramid fusion.
Returns:
fused_main: Tensor at finest scale (after refinenet1)
aux_pyr: List of aux tensors at each level (pre out_conv1_aux)
"""
l1, l2, l3, l4 = feats
l1_rn = self.scratch.layer1_rn(l1)
l2_rn = self.scratch.layer2_rn(l2)
l3_rn = self.scratch.layer3_rn(l3)
l4_rn = self.scratch.layer4_rn(l4)
# level 4 -> 3
out = self.scratch.refinenet4(l4_rn, size=l3_rn.shape[2:])
aux_out = self.scratch.refinenet4_aux(l4_rn, size=l3_rn.shape[2:])
aux_list: List[torch.Tensor] = []
if self.aux_levels >= 4:
aux_list.append(aux_out)
# level 3 -> 2
out = self.scratch.refinenet3(out, l3_rn, size=l2_rn.shape[2:])
aux_out = self.scratch.refinenet3_aux(aux_out, l3_rn, size=l2_rn.shape[2:])
if self.aux_levels >= 3:
aux_list.append(aux_out)
# level 2 -> 1
out = self.scratch.refinenet2(out, l2_rn, size=l1_rn.shape[2:])
aux_out = self.scratch.refinenet2_aux(aux_out, l2_rn, size=l1_rn.shape[2:])
if self.aux_levels >= 2:
aux_list.append(aux_out)
# level 1 (final)
out = self.scratch.refinenet1(out, l1_rn)
aux_out = self.scratch.refinenet1_aux(aux_out, l1_rn)
aux_list.append(aux_out)
out = self.scratch.output_conv1(out)
aux_list = [self.scratch.output_conv1_aux[i](aux) for i, aux in enumerate(aux_list)]
return out, aux_list
def _add_pos_embed(self, x: torch.Tensor, W: int, H: int, ratio: float = 0.1) -> torch.Tensor:
"""Simple UV positional embedding added to feature maps."""
pw, ph = x.shape[-1], x.shape[-2]
pe = create_uv_grid(pw, ph, aspect_ratio=W / H, dtype=x.dtype, device=x.device)
pe = position_grid_to_embed(pe, x.shape[1]) * ratio
pe = pe.permute(2, 0, 1)[None].expand(x.shape[0], -1, -1, -1)
return x + pe
def _make_aux_out1_block(self, in_ch: int) -> nn.Sequential:
"""Factory for the aux pre-head stack before the final 1x1 projection."""
if self.aux_out1_conv_num == 5:
return nn.Sequential(
nn.Conv2d(in_ch, in_ch // 2, 3, 1, 1),
nn.Conv2d(in_ch // 2, in_ch, 3, 1, 1),
nn.Conv2d(in_ch, in_ch // 2, 3, 1, 1),
nn.Conv2d(in_ch // 2, in_ch, 3, 1, 1),
nn.Conv2d(in_ch, in_ch // 2, 3, 1, 1),
)
if self.aux_out1_conv_num == 3:
return nn.Sequential(
nn.Conv2d(in_ch, in_ch // 2, 3, 1, 1),
nn.Conv2d(in_ch // 2, in_ch, 3, 1, 1),
nn.Conv2d(in_ch, in_ch // 2, 3, 1, 1),
)
if self.aux_out1_conv_num == 1:
return nn.Sequential(nn.Conv2d(in_ch, in_ch // 2, 3, 1, 1))
raise ValueError(f"aux_out1_conv_num {self.aux_out1_conv_num} not supported")
def _apply_activation_single(
self, x: torch.Tensor, activation: str = "linear"
) -> torch.Tensor:
"""
Apply activation to single channel output, maintaining semantic consistency with value branch in multi-channel case.
Supports: exp / relu / sigmoid / softplus / tanh / linear / expp1
"""
act = activation.lower() if isinstance(activation, str) else activation
if act == "exp":
return torch.exp(x)
if act == "expm1":
return torch.expm1(x)
if act == "expp1":
return torch.exp(x) + 1
if act == "relu":
return torch.relu(x)
if act == "sigmoid":
return torch.sigmoid(x)
if act == "softplus":
return torch.nn.functional.softplus(x)
if act == "tanh":
return torch.tanh(x)
# Default linear
return x
# # -----------------------------------------------------------------------------
# # Building blocks (tidy)
# # -----------------------------------------------------------------------------
# def _make_fusion_block(
# features: int,
# size: Tuple[int, int] = None,
# has_residual: bool = True,
# groups: int = 1,
# inplace: bool = False, # <- activation uses inplace=True by default; not related to "fusion_inplace"
# ) -> nn.Module:
# return FeatureFusionBlock(
# features=features,
# activation=nn.ReLU(inplace=inplace),
# deconv=False,
# bn=False,
# expand=False,
# align_corners=True,
# size=size,
# has_residual=has_residual,
# groups=groups,
# )
# def _make_scratch(
# in_shape: List[int], out_shape: int, groups: int = 1, expand: bool = False
# ) -> nn.Module:
# scratch = nn.Module()
# # optionally expand widths by stage
# c1 = out_shape
# c2 = out_shape * (2 if expand else 1)
# c3 = out_shape * (4 if expand else 1)
# c4 = out_shape * (8 if expand else 1)
# scratch.layer1_rn = nn.Conv2d(in_shape[0], c1, 3, 1, 1, bias=False, groups=groups)
# scratch.layer2_rn = nn.Conv2d(in_shape[1], c2, 3, 1, 1, bias=False, groups=groups)
# scratch.layer3_rn = nn.Conv2d(in_shape[2], c3, 3, 1, 1, bias=False, groups=groups)
# scratch.layer4_rn = nn.Conv2d(in_shape[3], c4, 3, 1, 1, bias=False, groups=groups)
# return scratch
# class ResidualConvUnit(nn.Module):
# """Lightweight residual conv block used within fusion."""
# def __init__(self, features: int, activation: nn.Module, bn: bool, groups: int = 1) -> None:
# super().__init__()
# self.bn = bn
# self.groups = groups
# self.conv1 = nn.Conv2d(features, features, 3, 1, 1, bias=True, groups=groups)
# self.conv2 = nn.Conv2d(features, features, 3, 1, 1, bias=True, groups=groups)
# self.norm1 = None
# self.norm2 = None
# self.activation = activation
# self.skip_add = nn.quantized.FloatFunctional()
# def forward(self, x: torch.Tensor) -> torch.Tensor: # type: ignore[override]
# out = self.activation(x)
# out = self.conv1(out)
# if self.norm1 is not None:
# out = self.norm1(out)
# out = self.activation(out)
# out = self.conv2(out)
# if self.norm2 is not None:
# out = self.norm2(out)
# return self.skip_add.add(out, x)
# class FeatureFusionBlock(nn.Module):
# """Top-down fusion block: (optional) residual merge + upsample + 1x1 shrink."""
# def __init__(
# self,
# features: int,
# activation: nn.Module,
# deconv: bool = False,
# bn: bool = False,
# expand: bool = False,
# align_corners: bool = True,
# size: Tuple[int, int] = None,
# has_residual: bool = True,
# groups: int = 1,
# ) -> None:
# super().__init__()
# self.align_corners = align_corners
# self.size = size
# self.has_residual = has_residual
# self.resConfUnit1 = (
# ResidualConvUnit(features, activation, bn, groups=groups) if has_residual else None
# )
# self.resConfUnit2 = ResidualConvUnit(features, activation, bn, groups=groups)
# out_features = (features // 2) if expand else features
# self.out_conv = nn.Conv2d(features, out_features, 1, 1, 0, bias=True, groups=groups)
# self.skip_add = nn.quantized.FloatFunctional()
# def forward(self, *xs: torch.Tensor, size: Tuple[int, int] = None) -> torch.Tensor: # type: ignore[override]
# """
# xs:
# - xs[0]: top input
# - xs[1]: (optional) lateral (to be added with residual)
# """
# y = xs[0]
# if self.has_residual and len(xs) > 1 and self.resConfUnit1 is not None:
# y = self.skip_add.add(y, self.resConfUnit1(xs[1]))
# y = self.resConfUnit2(y)
# # upsample
# if (size is None) and (self.size is None):
# up_kwargs = {"scale_factor": 2}
# elif size is None:
# up_kwargs = {"size": self.size}
# else:
# up_kwargs = {"size": size}
# y = custom_interpolate(y, **up_kwargs, mode="bilinear", align_corners=self.align_corners)
# y = self.out_conv(y)
# return y |