amro-alasri's picture
Upload folder using huggingface_hub
73fe9ee verified
# Copyright (c) 2025 ByteDance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Depth Anything 3 API module.
This module provides the main API for Depth Anything 3, including model loading,
inference, and export capabilities. It supports both single and nested model architectures.
"""
from __future__ import annotations
import time
from typing import Optional, Sequence
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import PyTorchModelHubMixin
from PIL import Image
from depth_anything_3.cfg import create_object, load_config
from depth_anything_3.registry import MODEL_REGISTRY
from depth_anything_3.specs import Prediction
from depth_anything_3.utils.export import export
from depth_anything_3.utils.geometry import affine_inverse
from depth_anything_3.utils.io.input_processor import InputProcessor
from depth_anything_3.utils.io.output_processor import OutputProcessor
from depth_anything_3.utils.logger import logger
from depth_anything_3.utils.pose_align import align_poses_umeyama
torch.backends.cudnn.benchmark = False
# logger.info("CUDNN Benchmark Disabled")
SAFETENSORS_NAME = "model.safetensors"
CONFIG_NAME = "config.json"
class DepthAnything3(nn.Module, PyTorchModelHubMixin):
"""
Depth Anything 3 main API class.
This class provides a high-level interface for depth estimation using Depth Anything 3.
It supports both single and nested model architectures with metric scaling capabilities.
Features:
- Hugging Face Hub integration via PyTorchModelHubMixin
- Support for multiple model presets (vitb, vitg, nested variants)
- Automatic mixed precision inference
- Export capabilities for various formats (GLB, PLY, NPZ, etc.)
- Camera pose estimation and metric depth scaling
Usage:
# Load from Hugging Face Hub
model = DepthAnything3.from_pretrained("huggingface/model-name")
# Or create with specific preset
model = DepthAnything3(preset="vitg")
# Run inference
prediction = model.inference(images, export_dir="output", export_format="glb")
"""
_commit_hash: str | None = None # Set by mixin when loading from Hub
def __init__(self, model_name: str = "da3-large", **kwargs):
"""
Initialize DepthAnything3 with specified preset.
Args:
model_name: The name of the model preset to use.
Examples: 'da3-giant', 'da3-large', 'da3metric-large', 'da3nested-giant-large'.
**kwargs: Additional keyword arguments (currently unused).
"""
super().__init__()
self.model_name = model_name
# Build the underlying network
self.config = load_config(MODEL_REGISTRY[self.model_name])
self.model = create_object(self.config)
self.model.eval()
# Initialize processors
self.input_processor = InputProcessor()
self.output_processor = OutputProcessor()
# Device management (set by user)
self.device = None
@torch.inference_mode()
def forward(
self,
image: torch.Tensor,
extrinsics: torch.Tensor | None = None,
intrinsics: torch.Tensor | None = None,
export_feat_layers: list[int] | None = None,
infer_gs: bool = False,
) -> dict[str, torch.Tensor]:
"""
Forward pass through the model.
Args:
image: Input batch with shape ``(B, N, 3, H, W)`` on the model device.
extrinsics: Optional camera extrinsics with shape ``(B, N, 4, 4)``.
intrinsics: Optional camera intrinsics with shape ``(B, N, 3, 3)``.
export_feat_layers: Layer indices to return intermediate features for.
Returns:
Dictionary containing model predictions
"""
# Determine optimal autocast dtype
autocast_dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
with torch.no_grad():
with torch.autocast(device_type=image.device.type, dtype=autocast_dtype):
return self.model(image, extrinsics, intrinsics, export_feat_layers, infer_gs)
def inference(
self,
image: list[np.ndarray | Image.Image | str],
extrinsics: np.ndarray | None = None,
intrinsics: np.ndarray | None = None,
align_to_input_ext_scale: bool = True,
infer_gs: bool = False,
render_exts: np.ndarray | None = None,
render_ixts: np.ndarray | None = None,
render_hw: tuple[int, int] | None = None,
process_res: int = 504,
process_res_method: str = "upper_bound_resize",
export_dir: str | None = None,
export_format: str = "mini_npz",
export_feat_layers: Sequence[int] | None = None,
# GLB export parameters
conf_thresh_percentile: float = 40.0,
num_max_points: int = 1_000_000,
show_cameras: bool = True,
# Feat_vis export parameters
feat_vis_fps: int = 15,
export_kwargs: Optional[dict] = {},
) -> Prediction:
"""
Run inference on input images.
Args:
image: List of input images (numpy arrays, PIL Images, or file paths)
extrinsics: Camera extrinsics (N, 4, 4)
intrinsics: Camera intrinsics (N, 3, 3)
align_to_input_ext_scale: whether to align the input pose scale to the prediction
infer_gs: Enable the 3D Gaussian branch (needed for `gs_ply`/`gs_video` exports)
render_exts: Optional render extrinsics for Gaussian video export
render_ixts: Optional render intrinsics for Gaussian video export
render_hw: Optional render resolution for Gaussian video export
process_res: Processing resolution
process_res_method: Resize method for processing
export_dir: Directory to export results
export_format: Export format (mini_npz, npz, glb, ply, gs, gs_video)
export_feat_layers: Layer indices to export intermediate features from
conf_thresh_percentile: [GLB] Lower percentile for adaptive confidence threshold (default: 40.0) # noqa: E501
num_max_points: [GLB] Maximum number of points in the point cloud (default: 1,000,000)
show_cameras: [GLB] Show camera wireframes in the exported scene (default: True)
feat_vis_fps: [FEAT_VIS] Frame rate for output video (default: 15)
export_kwargs: additional arguments to export functions.
Returns:
Prediction object containing depth maps and camera parameters
"""
if "gs" in export_format:
assert infer_gs, "must set `infer_gs=True` to perform gs-related export."
# Preprocess images
imgs_cpu, extrinsics, intrinsics = self._preprocess_inputs(
image, extrinsics, intrinsics, process_res, process_res_method
)
# Prepare tensors for model
imgs, ex_t, in_t = self._prepare_model_inputs(imgs_cpu, extrinsics, intrinsics)
# Normalize extrinsics
ex_t_norm = self._normalize_extrinsics(ex_t.clone() if ex_t is not None else None)
# Run model forward pass
export_feat_layers = list(export_feat_layers) if export_feat_layers is not None else []
raw_output = self._run_model_forward(imgs, ex_t_norm, in_t, export_feat_layers, infer_gs)
# Convert raw output to prediction
prediction = self._convert_to_prediction(raw_output)
# Align prediction to extrinsincs
prediction = self._align_to_input_extrinsics_intrinsics(
extrinsics, intrinsics, prediction, align_to_input_ext_scale
)
# Add processed images for visualization
prediction = self._add_processed_images(prediction, imgs_cpu)
# Export if requested
if export_dir is not None:
if "gs" in export_format:
if infer_gs and "gs_video" not in export_format:
export_format = f"{export_format}-gs_video"
if "gs_video" in export_format:
if "gs_video" not in export_kwargs:
export_kwargs["gs_video"] = {}
export_kwargs["gs_video"].update(
{
"extrinsics": render_exts,
"intrinsics": render_ixts,
"out_image_hw": render_hw,
}
)
# Add GLB export parameters
if "glb" in export_format:
if "glb" not in export_kwargs:
export_kwargs["glb"] = {}
export_kwargs["glb"].update(
{
"conf_thresh_percentile": conf_thresh_percentile,
"num_max_points": num_max_points,
"show_cameras": show_cameras,
}
)
# Add Feat_vis export parameters
if "feat_vis" in export_format:
if "feat_vis" not in export_kwargs:
export_kwargs["feat_vis"] = {}
export_kwargs["feat_vis"].update(
{
"fps": feat_vis_fps,
}
)
self._export_results(prediction, export_format, export_dir, **export_kwargs)
return prediction
def _preprocess_inputs(
self,
image: list[np.ndarray | Image.Image | str],
extrinsics: np.ndarray | None = None,
intrinsics: np.ndarray | None = None,
process_res: int = 504,
process_res_method: str = "upper_bound_resize",
) -> torch.Tensor:
"""Preprocess input images using input processor."""
start_time = time.time()
imgs_cpu, extrinsics, intrinsics = self.input_processor(
image,
extrinsics.copy() if extrinsics is not None else None,
intrinsics.copy() if intrinsics is not None else None,
process_res,
process_res_method,
)
end_time = time.time()
logger.info(
"Processed Images Done taking",
end_time - start_time,
"seconds. Shape: ",
imgs_cpu.shape,
)
return imgs_cpu, extrinsics, intrinsics
def _prepare_model_inputs(
self,
imgs_cpu: torch.Tensor,
extrinsics: torch.tensor | None,
intrinsics: torch.tensor | None,
) -> tuple[torch.Tensor, torch.Tensor | None, torch.Tensor | None]:
"""Prepare tensors for model input."""
device = self._get_model_device()
# Move images to model device
imgs = imgs_cpu.to(device, non_blocking=True)[None].float()
# Convert camera parameters to tensors
ex_t = (
extrinsics.to(device, non_blocking=True)[None].float()
if extrinsics is not None
else None
)
in_t = (
intrinsics.to(device, non_blocking=True)[None].float()
if intrinsics is not None
else None
)
return imgs, ex_t, in_t
def _normalize_extrinsics(self, ex_t: torch.Tensor) -> torch.Tensor:
"""Normalize extrinsics"""
if ex_t is None:
return None
transform = affine_inverse(ex_t[:, :1])
ex_t_norm = ex_t @ transform
c2ws = affine_inverse(ex_t_norm)
translations = c2ws[..., :3, 3]
dists = translations.norm(dim=-1)
median_dist = torch.median(dists)
median_dist = torch.clamp(median_dist, min=1e-1)
ex_t_norm[..., :3, 3] = ex_t_norm[..., :3, 3] / median_dist
return ex_t_norm
def _align_to_input_extrinsics_intrinsics(
self,
extrinsics: torch.Tensor,
intrinsics: torch.Tensor,
prediction: Prediction,
align_to_input_ext_scale: bool = True,
ransac_view_thresh: int = 10,
) -> Prediction:
"""Align depth map to input extrinsics"""
if extrinsics is None:
return prediction
prediction.intrinsics = intrinsics.numpy()
_, _, scale, aligned_extrinsics = align_poses_umeyama(
prediction.extrinsics,
extrinsics.numpy(),
ransac=len(extrinsics) >= ransac_view_thresh,
return_aligned=True,
random_state=42,
)
if align_to_input_ext_scale:
prediction.extrinsics = extrinsics[..., :3, :].numpy()
prediction.depth /= scale
else:
prediction.extrinsics = aligned_extrinsics
return prediction
def _run_model_forward(
self,
imgs: torch.Tensor,
ex_t: torch.Tensor | None,
in_t: torch.Tensor | None,
export_feat_layers: Sequence[int] | None = None,
infer_gs: bool = False,
) -> dict[str, torch.Tensor]:
"""Run model forward pass."""
device = imgs.device
need_sync = device.type == "cuda"
if need_sync:
torch.cuda.synchronize(device)
start_time = time.time()
feat_layers = list(export_feat_layers) if export_feat_layers is not None else None
output = self.forward(imgs, ex_t, in_t, feat_layers, infer_gs)
if need_sync:
torch.cuda.synchronize(device)
end_time = time.time()
logger.info(f"Model Forward Pass Done. Time: {end_time - start_time} seconds")
return output
def _convert_to_prediction(self, raw_output: dict[str, torch.Tensor]) -> Prediction:
"""Convert raw model output to Prediction object."""
start_time = time.time()
output = self.output_processor(raw_output)
end_time = time.time()
logger.info(f"Conversion to Prediction Done. Time: {end_time - start_time} seconds")
return output
def _add_processed_images(self, prediction: Prediction, imgs_cpu: torch.Tensor) -> Prediction:
"""Add processed images to prediction for visualization."""
# Convert from (N, 3, H, W) to (N, H, W, 3) and denormalize
processed_imgs = imgs_cpu.permute(0, 2, 3, 1).cpu().numpy() # (N, H, W, 3)
# Denormalize from ImageNet normalization
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
processed_imgs = processed_imgs * std + mean
processed_imgs = np.clip(processed_imgs, 0, 1)
processed_imgs = (processed_imgs * 255).astype(np.uint8)
prediction.processed_images = processed_imgs
return prediction
def _export_results(
self, prediction: Prediction, export_format: str, export_dir: str, **kwargs
) -> None:
"""Export results to specified format and directory."""
start_time = time.time()
export(prediction, export_format, export_dir, **kwargs)
end_time = time.time()
logger.info(f"Export Results Done. Time: {end_time - start_time} seconds")
def _get_model_device(self) -> torch.device:
"""
Get the device where the model is located.
Returns:
Device where the model parameters are located
Raises:
ValueError: If no tensors are found in the model
"""
if self.device is not None:
return self.device
# Find device from parameters
for param in self.parameters():
self.device = param.device
return param.device
# Find device from buffers
for buffer in self.buffers():
self.device = buffer.device
return buffer.device
raise ValueError("No tensor found in model")