Spaces:
Sleeping
Sleeping
| import torch | |
| from torchvision import transforms as transforms | |
| from torchvision.transforms import Compose | |
| from timm.data.constants import \ | |
| IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
| def make_test_transforms(image_size): | |
| test_transforms: Compose = transforms.Compose([ | |
| transforms.Resize(size=image_size, antialias=True), | |
| transforms.CenterCrop(image_size), | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD) | |
| ]) | |
| return test_transforms | |
| def inverse_normalize(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD): | |
| mean = torch.as_tensor(mean) | |
| std = torch.as_tensor(std) | |
| un_normalize = transforms.Normalize((-mean / std).tolist(), (1.0 / std).tolist()) | |
| return un_normalize | |
| def normalize_only(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD): | |
| normalize = transforms.Normalize(mean=mean, std=std) | |
| return normalize | |
| def inverse_normalize_w_resize(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, | |
| resize_resolution=(256, 256)): | |
| mean = torch.as_tensor(mean) | |
| std = torch.as_tensor(std) | |
| resize_unnorm = transforms.Compose([ | |
| transforms.Normalize((-mean / std).tolist(), (1.0 / std).tolist()), | |
| transforms.Resize(size=resize_resolution, antialias=True)]) | |
| return resize_unnorm | |