|
|
import contextlib |
|
|
import time |
|
|
from enum import IntEnum |
|
|
from typing import Dict, List, NamedTuple, Optional, Set, Tuple |
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
|
|
|
from vllm.attention import (AttentionMetadata, AttentionMetadataPerStage, |
|
|
get_attn_backend) |
|
|
from vllm.config import (DeviceConfig, LoadConfig, LoRAConfig, ModelConfig, |
|
|
ParallelConfig, SchedulerConfig, VisionLanguageConfig) |
|
|
from vllm.distributed import broadcast_tensor_dict, with_pynccl_for_all_reduce |
|
|
from vllm.distributed.device_communicators import (custom_all_reduce, |
|
|
pynccl_utils) |
|
|
from vllm.logger import init_logger |
|
|
from vllm.lora.layers import LoRAMapping |
|
|
from vllm.lora.request import LoRARequest |
|
|
from vllm.lora.worker_manager import LRUCacheWorkerLoRAManager |
|
|
from vllm.model_executor import SamplingMetadata |
|
|
from vllm.model_executor.model_loader import get_model |
|
|
from vllm.sampling_params import SamplingParams, SamplingType |
|
|
from vllm.sequence import (MultiModalData, SamplerOutput, SequenceData, |
|
|
SequenceGroupMetadata) |
|
|
from vllm.utils import (CudaMemoryProfiler, async_tensor_h2d, is_hip, |
|
|
is_pin_memory_available, make_tensor_with_pad, |
|
|
maybe_expand_dim) |
|
|
from serve.gpt_model import GPT_models |
|
|
|
|
|
logger = init_logger(__name__) |
|
|
|
|
|
_PAD_SLOT_ID = -1 |
|
|
LORA_WARMUP_RANK = 8 |
|
|
_BATCH_SIZE_ALIGNMENT = 8 |
|
|
|
|
|
|
|
|
_BATCH_SIZES_TO_CAPTURE = [1, 2, 4] + [ |
|
|
_BATCH_SIZE_ALIGNMENT * i for i in range(1, 33) |
|
|
] |
|
|
|
|
|
|
|
|
class PreparePromptMetadata(NamedTuple): |
|
|
input_tokens: List[int] |
|
|
input_positions: List[int] |
|
|
attn_metadata: Optional[AttentionMetadataPerStage] |
|
|
prompt_lens: List[int] |
|
|
subquery_lens: List[int] |
|
|
lora_index_mapping: List[int] |
|
|
lora_prompt_mapping: List[int] |
|
|
lora_requests: Set[LoRARequest] |
|
|
multi_modal_input: Optional[torch.Tensor] |
|
|
slot_mapping: List[int] |
|
|
|
|
|
@classmethod |
|
|
def empty(cls): |
|
|
return PreparePromptMetadata( |
|
|
input_tokens=[], |
|
|
input_positions=[], |
|
|
attn_metadata=None, |
|
|
prompt_lens=[], |
|
|
subquery_lens=[], |
|
|
lora_index_mapping=[], |
|
|
lora_prompt_mapping=[], |
|
|
lora_requests=set(), |
|
|
multi_modal_input=None, |
|
|
slot_mapping=[], |
|
|
) |
|
|
|
|
|
|
|
|
class PrepareDecodeMetadata(NamedTuple): |
|
|
input_tokens: List[int] |
|
|
input_positions: List[int] |
|
|
attn_metadata: Optional[AttentionMetadata] |
|
|
lora_index_mapping: List[int] |
|
|
lora_prompt_mapping: List[int] |
|
|
lora_requests: Set[LoRARequest] |
|
|
slot_mapping: List[int] |
|
|
|
|
|
@classmethod |
|
|
def empty(cls): |
|
|
return PrepareDecodeMetadata( |
|
|
input_tokens=[], |
|
|
input_positions=[], |
|
|
attn_metadata=None, |
|
|
lora_index_mapping=[], |
|
|
lora_prompt_mapping=[], |
|
|
lora_requests=set(), |
|
|
slot_mapping=[], |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
class BatchType(IntEnum): |
|
|
|
|
|
PREFILL = 0 |
|
|
|
|
|
DECODE = 1 |
|
|
|
|
|
MIXED = 2 |
|
|
|
|
|
|
|
|
class ModelRunner: |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
model_config: ModelConfig, |
|
|
parallel_config: ParallelConfig, |
|
|
scheduler_config: SchedulerConfig, |
|
|
device_config: DeviceConfig, |
|
|
load_config: LoadConfig, |
|
|
lora_config: Optional[LoRAConfig], |
|
|
kv_cache_dtype: Optional[str] = "auto", |
|
|
is_driver_worker: bool = False, |
|
|
vision_language_config: Optional[VisionLanguageConfig] = None, |
|
|
): |
|
|
self.model_config = model_config |
|
|
self.parallel_config = parallel_config |
|
|
self.scheduler_config = scheduler_config |
|
|
self.lora_config = lora_config |
|
|
self.load_config = load_config |
|
|
self.is_driver_worker = is_driver_worker |
|
|
|
|
|
|
|
|
|
|
|
self.sliding_window = (model_config.get_sliding_window() |
|
|
if model_config is not None else None) |
|
|
self.device_config = (device_config |
|
|
if device_config is not None else DeviceConfig()) |
|
|
self.device = self.device_config.device |
|
|
|
|
|
|
|
|
self.lora_manager: LRUCacheWorkerLoRAManager = None |
|
|
|
|
|
self.graph_runners: Dict[int, CUDAGraphRunner] = {} |
|
|
self.graph_memory_pool: Optional[Tuple[ |
|
|
int, int]] = None |
|
|
|
|
|
self.max_context_len_to_capture = ( |
|
|
self.model_config.max_context_len_to_capture |
|
|
if self.model_config is not None else 0) |
|
|
|
|
|
self.pin_memory = is_pin_memory_available() |
|
|
self.kv_cache_dtype = kv_cache_dtype |
|
|
self.vision_language_config = vision_language_config |
|
|
|
|
|
self.attn_backend = get_attn_backend( |
|
|
self.model_config.dtype if model_config is not None else None) |
|
|
|
|
|
|
|
|
self.model: torch.nn.Module |
|
|
self.block_size: int |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.graph_block_tables: torch.Tensor |
|
|
|
|
|
def load_model(self, args) -> None: |
|
|
with CudaMemoryProfiler() as m: |
|
|
precision = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.precision] |
|
|
latent_size = args.image_size // args.downsample_size |
|
|
gpt_model = GPT_models[args.gpt_model]( |
|
|
vocab_size=args.codebook_size, |
|
|
block_size=latent_size ** 2, |
|
|
num_classes=args.num_classes, |
|
|
cls_token_num=args.cls_token_num, |
|
|
model_type=args.gpt_type, |
|
|
cfg_scale=args.cfg_scale, |
|
|
).to(device='cuda', dtype=precision) |
|
|
|
|
|
checkpoint = torch.load(args.gpt_ckpt, map_location="cpu") |
|
|
if args.from_fsdp: |
|
|
model_weight = checkpoint |
|
|
elif "model" in checkpoint: |
|
|
model_weight = checkpoint["model"] |
|
|
elif "state_dict" in checkpoint: |
|
|
model_weight = checkpoint["state_dict"] |
|
|
else: |
|
|
raise Exception("please check model weight") |
|
|
gpt_model.custom_load_state_dict(model_weight) |
|
|
gpt_model.eval() |
|
|
del checkpoint |
|
|
self.model = gpt_model |
|
|
|
|
|
self.model_memory_usage = m.consumed_memory |
|
|
logger.info(f"Loading model weights took " |
|
|
f"{self.model_memory_usage / float(2**30):.4f} GB") |
|
|
|
|
|
if self.lora_config: |
|
|
assert hasattr(self.model, "supported_lora_modules" |
|
|
) and self.model.supported_lora_modules, ( |
|
|
"Model does not support LoRA") |
|
|
assert hasattr( |
|
|
self.model, |
|
|
"embedding_modules"), "Model does not have embedding_modules" |
|
|
assert hasattr(self.model, "embedding_padding_modules" |
|
|
), "Model does not have embedding_padding_modules" |
|
|
self.lora_manager = LRUCacheWorkerLoRAManager( |
|
|
self.scheduler_config.max_num_seqs, |
|
|
self.scheduler_config.max_num_batched_tokens, self.vocab_size, |
|
|
self.lora_config, self.device, self.model.embedding_modules, |
|
|
self.model.embedding_padding_modules) |
|
|
self.model = self.lora_manager.create_lora_manager(self.model) |
|
|
|
|
|
if self.kv_cache_dtype == "fp8" and is_hip(): |
|
|
|
|
|
if self.model_config.quantization_param_path is not None: |
|
|
if callable(getattr(self.model, "load_kv_cache_scales", None)): |
|
|
self.model.load_kv_cache_scales( |
|
|
self.model_config.quantization_param_path) |
|
|
else: |
|
|
raise RuntimeError("Using FP8 KV cache and scaling " |
|
|
"factors provided but model " |
|
|
f"{self.model.__class__} does not " |
|
|
"support loading scaling factors.") |
|
|
else: |
|
|
logger.warn("Using FP8 KV cache but no scaling factors " |
|
|
"provided. Defaulting to scaling factors of 1.0. " |
|
|
"This may lead to less accurate results!") |
|
|
elif self.model_config.quantization_param_path is not None: |
|
|
logger.warn("KV cache scaling factors provided, " |
|
|
"but the KV cache data type is not FP8. " |
|
|
"KV cache scaling factors will not be used.") |
|
|
|
|
|
def set_block_size(self, block_size: int) -> None: |
|
|
self.block_size = block_size |
|
|
|
|
|
self.graph_block_tables = np.zeros( |
|
|
(max(_BATCH_SIZES_TO_CAPTURE), self.get_max_block_per_batch()), |
|
|
dtype=np.int32) |
|
|
|
|
|
def get_max_block_per_batch(self) -> int: |
|
|
block_size = self.block_size |
|
|
return (self.max_context_len_to_capture + block_size - 1) // block_size |
|
|
|
|
|
def _prepare_prompt( |
|
|
self, |
|
|
seq_group_metadata_list: List[SequenceGroupMetadata], |
|
|
) -> PreparePromptMetadata: |
|
|
input_tokens: List[int] = [] |
|
|
input_positions: List[int] = [] |
|
|
slot_mapping: List[int] = [] |
|
|
lora_index_mapping: List[int] = [] |
|
|
lora_prompt_mapping: List[int] = [] |
|
|
lora_requests: Set[LoRARequest] = set() |
|
|
|
|
|
prompt_lens: List[int] = [] |
|
|
context_lens: List[int] = [] |
|
|
subquery_lens: List[int] = [] |
|
|
prefix_block_tables: List[List[int]] = [] |
|
|
multi_modal_input_list: List[torch.Tensor] = [] |
|
|
|
|
|
if len(seq_group_metadata_list) == 0: |
|
|
return PreparePromptMetadata.empty() |
|
|
|
|
|
for seq_group_metadata in seq_group_metadata_list: |
|
|
assert seq_group_metadata.is_prompt |
|
|
seq_ids = list(seq_group_metadata.seq_data.keys()) |
|
|
assert len(seq_ids) == 1 |
|
|
seq_id = seq_ids[0] |
|
|
|
|
|
computed_block_nums = seq_group_metadata.computed_block_nums |
|
|
if (self.scheduler_config is not None |
|
|
and self.scheduler_config.chunked_prefill_enabled |
|
|
and not (computed_block_nums is None |
|
|
or computed_block_nums == [])): |
|
|
raise RuntimeError( |
|
|
"chunked prefill cannot be used with prefix caching " |
|
|
"now.") |
|
|
|
|
|
token_chunk_size = seq_group_metadata.token_chunk_size |
|
|
seq_data = seq_group_metadata.seq_data[seq_id] |
|
|
computed_len = seq_data.get_num_computed_tokens() |
|
|
|
|
|
|
|
|
prefill_end = min(seq_data.get_len(), |
|
|
computed_len + token_chunk_size) |
|
|
prompt_tokens = seq_data.get_token_ids()[computed_len:prefill_end] |
|
|
prompt_len = prefill_end |
|
|
prompt_lens.append(prompt_len) |
|
|
|
|
|
|
|
|
if computed_block_nums is not None and len( |
|
|
computed_block_nums) > 0 and self.sliding_window is None: |
|
|
|
|
|
computed_len = len(computed_block_nums) * self.block_size |
|
|
prompt_tokens = prompt_tokens[computed_len:] |
|
|
prefix_block_tables.append(computed_block_nums) |
|
|
elif self.scheduler_config.chunked_prefill_enabled: |
|
|
if seq_group_metadata.block_tables is not None: |
|
|
|
|
|
block_table = seq_group_metadata.block_tables[seq_id] |
|
|
prefix_block_tables.append(block_table) |
|
|
else: |
|
|
|
|
|
prefix_block_tables.append([]) |
|
|
else: |
|
|
prefix_block_tables.append([]) |
|
|
|
|
|
|
|
|
assert computed_len == 0 |
|
|
|
|
|
|
|
|
context_lens.append(computed_len) |
|
|
subquery_lens.append(prompt_len - computed_len) |
|
|
|
|
|
input_tokens.extend(prompt_tokens) |
|
|
|
|
|
|
|
|
input_positions.extend(list(range(computed_len, prefill_end))) |
|
|
lora_id = seq_group_metadata.lora_int_id |
|
|
|
|
|
if lora_id > 0: |
|
|
lora_requests.add(seq_group_metadata.lora_request) |
|
|
|
|
|
lora_index_mapping += [lora_id] * (prompt_len - computed_len) |
|
|
lora_prompt_mapping.extend( |
|
|
[lora_id] * |
|
|
(prompt_len - computed_len |
|
|
if seq_group_metadata.sampling_params.prompt_logprobs else 1)) |
|
|
|
|
|
if seq_group_metadata.multi_modal_data: |
|
|
multi_modal_input_list.append( |
|
|
seq_group_metadata.multi_modal_data.data) |
|
|
|
|
|
if seq_group_metadata.block_tables is None: |
|
|
|
|
|
|
|
|
slot_mapping.extend([_PAD_SLOT_ID] * prompt_len) |
|
|
continue |
|
|
|
|
|
|
|
|
block_table = seq_group_metadata.block_tables[seq_id] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
start_idx = 0 |
|
|
if self.sliding_window is not None: |
|
|
assert computed_len == 0, ( |
|
|
"Prefix caching is currently not supported with " |
|
|
"sliding window attention") |
|
|
start_idx = max(0, prompt_len - self.sliding_window) |
|
|
|
|
|
for i in range(computed_len, prefill_end): |
|
|
if i < start_idx: |
|
|
slot_mapping.append(_PAD_SLOT_ID) |
|
|
continue |
|
|
|
|
|
block_number = block_table[i // self.block_size] |
|
|
block_offset = i % self.block_size |
|
|
slot = block_number * self.block_size + block_offset |
|
|
slot_mapping.append(slot) |
|
|
|
|
|
max_subquery_len = max(subquery_lens) |
|
|
max_prompt_len = max(prompt_lens) |
|
|
assert max_subquery_len > 0 |
|
|
|
|
|
context_lens_tensor = torch.tensor(context_lens, |
|
|
dtype=torch.int, |
|
|
device=self.device) |
|
|
|
|
|
if multi_modal_input_list: |
|
|
assert self.vision_language_config, ( |
|
|
"Multi-modal inputs are only supported by " |
|
|
"vision language models.") |
|
|
multi_modal_input = torch.cat(multi_modal_input_list, |
|
|
dim=0).to(self.device) |
|
|
else: |
|
|
multi_modal_input = None |
|
|
|
|
|
|
|
|
max_prompt_block_table_len = max(len(t) for t in prefix_block_tables) |
|
|
block_tables = make_tensor_with_pad( |
|
|
prefix_block_tables, |
|
|
max_len=max_prompt_block_table_len, |
|
|
pad=0, |
|
|
dtype=torch.int, |
|
|
device=self.device, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
subquery_lens_tensor = torch.tensor(subquery_lens, |
|
|
dtype=torch.long, |
|
|
device=self.device) |
|
|
subquery_start_loc = torch.zeros(subquery_lens_tensor.shape[0] + 1, |
|
|
dtype=torch.int32, |
|
|
device=self.device) |
|
|
|
|
|
prompt_lens_tensor = torch.tensor(prompt_lens, |
|
|
dtype=torch.long, |
|
|
device=self.device) |
|
|
seq_start_loc = torch.zeros(prompt_lens_tensor.shape[0] + 1, |
|
|
dtype=torch.int32, |
|
|
device=self.device) |
|
|
|
|
|
torch.cumsum(subquery_lens_tensor, |
|
|
dim=0, |
|
|
dtype=subquery_start_loc.dtype, |
|
|
out=subquery_start_loc[1:]) |
|
|
|
|
|
torch.cumsum(prompt_lens_tensor, |
|
|
dim=0, |
|
|
dtype=seq_start_loc.dtype, |
|
|
out=seq_start_loc[1:]) |
|
|
|
|
|
attn_metadata = self.attn_backend.make_metadata( |
|
|
is_prompt=True, |
|
|
prompt_lens=prompt_lens, |
|
|
prompt_lens_tensor=prompt_lens_tensor, |
|
|
max_subquery_len=max_subquery_len, |
|
|
max_context_len=None, |
|
|
max_prompt_len=max_prompt_len, |
|
|
subquery_start_loc=subquery_start_loc, |
|
|
seq_start_loc=seq_start_loc, |
|
|
context_lens=context_lens_tensor, |
|
|
block_tables=block_tables, |
|
|
use_cuda_graph=False, |
|
|
) |
|
|
|
|
|
return PreparePromptMetadata( |
|
|
input_tokens=input_tokens, |
|
|
input_positions=input_positions, |
|
|
attn_metadata=attn_metadata, |
|
|
prompt_lens=prompt_lens, |
|
|
subquery_lens=subquery_lens, |
|
|
lora_index_mapping=lora_index_mapping, |
|
|
lora_prompt_mapping=lora_prompt_mapping, |
|
|
lora_requests=lora_requests, |
|
|
multi_modal_input=multi_modal_input, |
|
|
slot_mapping=slot_mapping, |
|
|
) |
|
|
|
|
|
def _prepare_decode( |
|
|
self, |
|
|
seq_group_metadata_list: List[SequenceGroupMetadata], |
|
|
) -> PrepareDecodeMetadata: |
|
|
input_tokens: List[int] = [] |
|
|
input_positions: List[int] = [] |
|
|
slot_mapping: List[int] = [] |
|
|
context_lens: List[int] = [] |
|
|
block_tables: List[List[int]] = [] |
|
|
lora_index_mapping: List[int] = [] |
|
|
lora_prompt_mapping: List[int] = [] |
|
|
lora_requests: Set[LoRARequest] = set() |
|
|
|
|
|
if len(seq_group_metadata_list) == 0: |
|
|
return PrepareDecodeMetadata.empty() |
|
|
|
|
|
for seq_group_metadata in seq_group_metadata_list: |
|
|
assert not seq_group_metadata.is_prompt |
|
|
assert seq_group_metadata.token_chunk_size == 1 |
|
|
|
|
|
seq_ids = list(seq_group_metadata.seq_data.keys()) |
|
|
lora_id = seq_group_metadata.lora_int_id |
|
|
|
|
|
if lora_id > 0: |
|
|
lora_requests.add(seq_group_metadata.lora_request) |
|
|
|
|
|
for seq_id in seq_ids: |
|
|
seq_data = seq_group_metadata.seq_data[seq_id] |
|
|
generation_token = seq_data.get_last_token_id() |
|
|
input_tokens.append(generation_token) |
|
|
|
|
|
seq_len = seq_data.get_len() |
|
|
position = seq_len - 1 |
|
|
input_positions.append(position) |
|
|
|
|
|
context_len = seq_len if self.sliding_window is None else min( |
|
|
seq_len, self.sliding_window) |
|
|
context_lens.append(context_len) |
|
|
|
|
|
block_table = seq_group_metadata.block_tables[seq_id] |
|
|
block_number = block_table[position // self.block_size] |
|
|
block_offset = position % self.block_size |
|
|
slot = block_number * self.block_size + block_offset |
|
|
slot_mapping.append(slot) |
|
|
lora_index_mapping.append(lora_id) |
|
|
lora_prompt_mapping.append(lora_id) |
|
|
|
|
|
if self.sliding_window is not None: |
|
|
sliding_window_blocks = (self.sliding_window // |
|
|
self.block_size) |
|
|
block_table = block_table[-sliding_window_blocks:] |
|
|
block_tables.append(block_table) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
batch_size = len(input_tokens) |
|
|
max_context_len = max(context_lens) |
|
|
use_captured_graph = ( |
|
|
not self.model_config.enforce_eager |
|
|
and batch_size <= _BATCH_SIZES_TO_CAPTURE[-1] |
|
|
and max_context_len <= self.max_context_len_to_capture) |
|
|
if use_captured_graph: |
|
|
graph_batch_size = _get_graph_batch_size(batch_size) |
|
|
assert graph_batch_size >= batch_size |
|
|
for _ in range(graph_batch_size - batch_size): |
|
|
input_tokens.append(0) |
|
|
input_positions.append(0) |
|
|
slot_mapping.append(_PAD_SLOT_ID) |
|
|
context_lens.append(1) |
|
|
block_tables.append([]) |
|
|
lora_index_mapping.append(0) |
|
|
batch_size = graph_batch_size |
|
|
|
|
|
context_lens_tensor = torch.tensor(context_lens, |
|
|
dtype=torch.int, |
|
|
device=self.device) |
|
|
|
|
|
if use_captured_graph: |
|
|
|
|
|
|
|
|
assert context_lens_tensor.shape[0] == len(input_tokens) |
|
|
assert context_lens_tensor.shape[0] == len(input_positions) |
|
|
assert context_lens_tensor.shape[0] == len(slot_mapping) |
|
|
|
|
|
|
|
|
|
|
|
input_block_tables = self.graph_block_tables[:batch_size] |
|
|
for i, block_table in enumerate(block_tables): |
|
|
if block_table: |
|
|
input_block_tables[i, :len(block_table)] = block_table |
|
|
block_tables = torch.tensor(input_block_tables, device=self.device) |
|
|
else: |
|
|
max_block_table_len = max( |
|
|
len(block_table) for block_table in block_tables) |
|
|
block_tables = make_tensor_with_pad( |
|
|
block_tables, |
|
|
max_len=max_block_table_len, |
|
|
pad=0, |
|
|
dtype=torch.int, |
|
|
device=self.device, |
|
|
) |
|
|
|
|
|
attn_metadata = self.attn_backend.make_metadata( |
|
|
is_prompt=False, |
|
|
prompt_lens=None, |
|
|
prompt_lens_tensor=None, |
|
|
max_subquery_len=None, |
|
|
max_context_len=max_context_len, |
|
|
max_prompt_len=None, |
|
|
subquery_start_loc=None, |
|
|
seq_start_loc=None, |
|
|
context_lens=context_lens_tensor, |
|
|
block_tables=block_tables, |
|
|
use_cuda_graph=use_captured_graph, |
|
|
) |
|
|
return PrepareDecodeMetadata( |
|
|
input_tokens=input_tokens, |
|
|
input_positions=input_positions, |
|
|
attn_metadata=attn_metadata, |
|
|
lora_index_mapping=lora_index_mapping, |
|
|
lora_prompt_mapping=lora_prompt_mapping, |
|
|
lora_requests=lora_requests, |
|
|
slot_mapping=slot_mapping, |
|
|
) |
|
|
|
|
|
def _prepare_sample( |
|
|
self, |
|
|
seq_group_metadata_list: List[SequenceGroupMetadata], |
|
|
prompt_lens: List[int], |
|
|
subquery_lens: Optional[List[int]], |
|
|
) -> SamplingMetadata: |
|
|
seq_groups: List[Tuple[List[int], SamplingParams]] = [] |
|
|
selected_token_indices: List[int] = [] |
|
|
generators: List[torch.Generator] = [] |
|
|
selected_token_start_idx = 0 |
|
|
categorized_sample_indices: Dict[SamplingType, |
|
|
List[Tuple[int, int]]] = { |
|
|
t: [] |
|
|
for t in SamplingType |
|
|
} |
|
|
categorized_sample_indices_start_idx = 0 |
|
|
categorized_sampled_token_indices_start_idx = 0 |
|
|
|
|
|
for i, seq_group_metadata in enumerate(seq_group_metadata_list): |
|
|
seq_ids = list(seq_group_metadata.seq_data.keys()) |
|
|
sampling_params = seq_group_metadata.sampling_params |
|
|
seq_groups.append((seq_ids, sampling_params)) |
|
|
|
|
|
if seq_group_metadata.is_prompt: |
|
|
assert len(seq_ids) == 1 |
|
|
assert subquery_lens is not None |
|
|
subquery_len = subquery_lens[i] |
|
|
if sampling_params.prompt_logprobs is not None: |
|
|
|
|
|
categorized_sample_indices_start_idx += subquery_len - 1 |
|
|
|
|
|
categorized_sample_indices[ |
|
|
sampling_params.sampling_type].append( |
|
|
(categorized_sample_indices_start_idx, |
|
|
categorized_sampled_token_indices_start_idx)) |
|
|
categorized_sample_indices_start_idx += 1 |
|
|
categorized_sampled_token_indices_start_idx += 1 |
|
|
|
|
|
if sampling_params.prompt_logprobs is not None: |
|
|
selected_token_indices.extend( |
|
|
range(selected_token_start_idx, |
|
|
selected_token_start_idx + subquery_len - 1)) |
|
|
selected_token_indices.append(selected_token_start_idx + |
|
|
subquery_len - 1) |
|
|
selected_token_start_idx += subquery_len |
|
|
|
|
|
if sampling_params.seed is not None: |
|
|
seq_group_metadata.state.generator = torch.Generator( |
|
|
device=self.device).manual_seed(sampling_params.seed) |
|
|
else: |
|
|
num_seqs = len(seq_ids) |
|
|
selected_token_indices.extend( |
|
|
range(selected_token_start_idx, |
|
|
selected_token_start_idx + num_seqs)) |
|
|
selected_token_start_idx += num_seqs |
|
|
|
|
|
categorized_sample_indices[ |
|
|
sampling_params.sampling_type].extend( |
|
|
list( |
|
|
zip( |
|
|
range( |
|
|
categorized_sample_indices_start_idx, |
|
|
categorized_sample_indices_start_idx + |
|
|
num_seqs), |
|
|
range( |
|
|
categorized_sampled_token_indices_start_idx, |
|
|
categorized_sampled_token_indices_start_idx |
|
|
+ num_seqs)))) |
|
|
categorized_sample_indices_start_idx += num_seqs |
|
|
categorized_sampled_token_indices_start_idx += num_seqs |
|
|
|
|
|
if sampling_params.seed is not None: |
|
|
generators.append(seq_group_metadata.state.generator) |
|
|
|
|
|
selected_token_indices = async_tensor_h2d(selected_token_indices, |
|
|
dtype=torch.long, |
|
|
target_device=self.device, |
|
|
pin_memory=self.pin_memory) |
|
|
|
|
|
categorized_sample_indices = { |
|
|
t: maybe_expand_dim( |
|
|
async_tensor_h2d(seq_ids, |
|
|
dtype=torch.int, |
|
|
target_device=self.device, |
|
|
pin_memory=self.pin_memory), 2, 2) |
|
|
for t, seq_ids in categorized_sample_indices.items() |
|
|
} |
|
|
|
|
|
seq_data: Dict[int, SequenceData] = {} |
|
|
for seq_group_metadata in seq_group_metadata_list: |
|
|
seq_data.update(seq_group_metadata.seq_data) |
|
|
|
|
|
sampling_metadata = SamplingMetadata( |
|
|
seq_groups=seq_groups, |
|
|
seq_data=seq_data, |
|
|
prompt_lens=prompt_lens, |
|
|
selected_token_indices=selected_token_indices, |
|
|
categorized_sample_indices=categorized_sample_indices, |
|
|
generators=generators, |
|
|
) |
|
|
return sampling_metadata |
|
|
|
|
|
def prepare_input_tensors( |
|
|
self, |
|
|
seq_group_metadata_list: List[SequenceGroupMetadata], |
|
|
) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata, SamplingMetadata, |
|
|
Set[LoRARequest], LoRAMapping, torch.Tensor]: |
|
|
if self.is_driver_worker: |
|
|
prefill_reqs = [] |
|
|
decode_reqs = [] |
|
|
for seq_group_meta in seq_group_metadata_list: |
|
|
if seq_group_meta.is_prompt: |
|
|
prefill_reqs.append(seq_group_meta) |
|
|
else: |
|
|
decode_reqs.append(seq_group_meta) |
|
|
|
|
|
|
|
|
( |
|
|
input_tokens, |
|
|
input_positions, |
|
|
prefill_attn_metadata, |
|
|
prompt_lens, |
|
|
subquery_lens, |
|
|
lora_index_mapping, |
|
|
lora_prompt_mapping, |
|
|
lora_requests, |
|
|
multi_modal_input, |
|
|
slot_mapping, |
|
|
) = self._prepare_prompt(prefill_reqs) |
|
|
( |
|
|
decode_input_tokens, |
|
|
decode_input_positions, |
|
|
decode_attn_metadata, |
|
|
decode_lora_index_mapping, |
|
|
decode_lora_prompt_mapping, |
|
|
decode_lora_requests, |
|
|
decode_slot_mapping, |
|
|
) = self._prepare_decode(decode_reqs) |
|
|
sampling_metadata = self._prepare_sample(seq_group_metadata_list, |
|
|
prompt_lens, |
|
|
subquery_lens) |
|
|
|
|
|
if not self.scheduler_config.chunked_prefill_enabled: |
|
|
assert (len(prefill_reqs) and len(decode_reqs)) == 0 |
|
|
|
|
|
num_prefills = len(prompt_lens) |
|
|
num_prefill_tokens = len(input_tokens) |
|
|
num_decode_tokens = len(decode_input_tokens) |
|
|
|
|
|
|
|
|
|
|
|
input_tokens.extend(decode_input_tokens) |
|
|
input_positions.extend(decode_input_positions) |
|
|
slot_mapping.extend(decode_slot_mapping) |
|
|
lora_index_mapping.extend(decode_lora_index_mapping) |
|
|
lora_prompt_mapping.extend(decode_lora_prompt_mapping) |
|
|
lora_requests.update(decode_lora_requests) |
|
|
|
|
|
input_tokens = torch.tensor(input_tokens, |
|
|
dtype=torch.long, |
|
|
device=self.device) |
|
|
input_positions = torch.tensor(input_positions, |
|
|
dtype=torch.long, |
|
|
device=self.device) |
|
|
slot_mapping = torch.tensor(slot_mapping, |
|
|
dtype=torch.long, |
|
|
device=self.device) |
|
|
|
|
|
if self.lora_config: |
|
|
lora_mapping = LoRAMapping( |
|
|
lora_index_mapping, |
|
|
lora_prompt_mapping, |
|
|
) |
|
|
else: |
|
|
lora_mapping = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (prefill_attn_metadata is not None |
|
|
and decode_attn_metadata is not None): |
|
|
batch_type = BatchType.MIXED |
|
|
elif prefill_attn_metadata is not None: |
|
|
batch_type = BatchType.PREFILL |
|
|
else: |
|
|
batch_type = BatchType.DECODE |
|
|
|
|
|
metadata_dict = { |
|
|
"input_tokens": input_tokens, |
|
|
"input_positions": input_positions, |
|
|
"selected_token_indices": |
|
|
sampling_metadata.selected_token_indices, |
|
|
"lora_requests": lora_requests, |
|
|
"lora_mapping": lora_mapping, |
|
|
"multi_modal_input": multi_modal_input, |
|
|
"num_prefill_tokens": num_prefill_tokens, |
|
|
"num_decode_tokens": num_decode_tokens, |
|
|
"slot_mapping": slot_mapping, |
|
|
"num_prefills": num_prefills, |
|
|
"batch_type": batch_type, |
|
|
} |
|
|
if prefill_attn_metadata is not None: |
|
|
metadata_dict.update(prefill_attn_metadata.asdict_zerocopy()) |
|
|
else: |
|
|
assert decode_attn_metadata is not None |
|
|
metadata_dict.update(decode_attn_metadata.asdict_zerocopy()) |
|
|
broadcast_tensor_dict(metadata_dict, src=0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if batch_type == BatchType.MIXED: |
|
|
assert decode_attn_metadata is not None |
|
|
metadata_dict = decode_attn_metadata.asdict_zerocopy() |
|
|
broadcast_tensor_dict(metadata_dict, src=0) |
|
|
else: |
|
|
metadata_dict = broadcast_tensor_dict(src=0) |
|
|
input_tokens = metadata_dict.pop("input_tokens") |
|
|
input_positions = metadata_dict.pop("input_positions") |
|
|
slot_mapping = metadata_dict.pop("slot_mapping") |
|
|
num_prefills = metadata_dict.pop("num_prefills") |
|
|
selected_token_indices = metadata_dict.pop( |
|
|
"selected_token_indices") |
|
|
lora_mapping = metadata_dict.pop("lora_mapping") |
|
|
lora_requests = metadata_dict.pop("lora_requests") |
|
|
multi_modal_input = metadata_dict.pop("multi_modal_input") |
|
|
num_prefill_tokens = metadata_dict.pop("num_prefill_tokens") |
|
|
num_decode_tokens = metadata_dict.pop("num_decode_tokens") |
|
|
batch_type = metadata_dict.pop("batch_type") |
|
|
|
|
|
|
|
|
prefill_attn_metadata = None |
|
|
decode_attn_metadata = None |
|
|
if batch_type == BatchType.PREFILL or batch_type == BatchType.MIXED: |
|
|
prefill_attn_metadata = self.attn_backend.make_metadata( |
|
|
**metadata_dict) |
|
|
else: |
|
|
decode_attn_metadata = self.attn_backend.make_metadata( |
|
|
**metadata_dict) |
|
|
sampling_metadata = SamplingMetadata( |
|
|
seq_groups=None, |
|
|
seq_data=None, |
|
|
prompt_lens=None, |
|
|
selected_token_indices=selected_token_indices, |
|
|
categorized_sample_indices=None, |
|
|
generators=None, |
|
|
perform_sampling=False, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
if batch_type == BatchType.MIXED: |
|
|
metadata_dict = broadcast_tensor_dict(src=0) |
|
|
decode_attn_metadata = self.attn_backend.make_metadata( |
|
|
**metadata_dict) |
|
|
|
|
|
attn_metadata = AttentionMetadata( |
|
|
num_prefills=num_prefills, |
|
|
slot_mapping=slot_mapping, |
|
|
num_prefill_tokens=num_prefill_tokens, |
|
|
num_decode_tokens=num_decode_tokens, |
|
|
prefill_metadata=prefill_attn_metadata, |
|
|
decode_metadata=decode_attn_metadata, |
|
|
kv_cache_dtype=self.kv_cache_dtype, |
|
|
) |
|
|
|
|
|
return (input_tokens, input_positions, attn_metadata, |
|
|
sampling_metadata, lora_requests, lora_mapping, |
|
|
multi_modal_input) |
|
|
|
|
|
@torch.inference_mode() |
|
|
def execute_model( |
|
|
self, |
|
|
seq_group_metadata_list: List[SequenceGroupMetadata], |
|
|
kv_caches: List[torch.Tensor], |
|
|
) -> Optional[SamplerOutput]: |
|
|
(input_tokens, input_positions, attn_metadata, sampling_metadata, |
|
|
lora_requests, lora_mapping, multi_modal_input |
|
|
) = self.prepare_input_tensors(seq_group_metadata_list) |
|
|
if self.lora_config: |
|
|
self.set_active_loras(lora_requests, lora_mapping) |
|
|
|
|
|
|
|
|
prefill_meta = attn_metadata.prefill_metadata |
|
|
decode_meta = attn_metadata.decode_metadata |
|
|
if prefill_meta is None and decode_meta.use_cuda_graph: |
|
|
graph_batch_size = input_tokens.shape[0] |
|
|
model_executable = self.graph_runners[graph_batch_size] |
|
|
else: |
|
|
model_executable = self.model |
|
|
execute_model_kwargs = { |
|
|
"input_ids": input_tokens, |
|
|
"positions": input_positions, |
|
|
"kv_caches": kv_caches, |
|
|
"attn_metadata": attn_metadata, |
|
|
} |
|
|
if self.vision_language_config: |
|
|
execute_model_kwargs.update({"image_input": multi_modal_input}) |
|
|
hidden_states = model_executable(**execute_model_kwargs) |
|
|
|
|
|
|
|
|
logits = self.model.compute_logits(hidden_states, sampling_metadata) |
|
|
|
|
|
|
|
|
if not sampling_metadata.perform_sampling: |
|
|
return None |
|
|
|
|
|
|
|
|
output = self.model.sample( |
|
|
logits=logits, |
|
|
sampling_metadata=sampling_metadata, |
|
|
) |
|
|
return output |
|
|
|
|
|
@torch.inference_mode() |
|
|
def profile_run(self) -> None: |
|
|
|
|
|
sampling_params = SamplingParams(top_p=0.99, top_k=self.vocab_size - 1) |
|
|
max_num_batched_tokens = self.scheduler_config.max_num_batched_tokens |
|
|
max_num_seqs = self.scheduler_config.max_num_seqs |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dummy_lora_requests = [] |
|
|
dummy_lora_requests_per_seq = [] |
|
|
if self.lora_config: |
|
|
for idx in range(self.lora_config.max_loras): |
|
|
lora_id = idx + 1 |
|
|
dummy_lora_request = LoRARequest( |
|
|
lora_name=f"warmup_{lora_id}", |
|
|
lora_int_id=lora_id, |
|
|
lora_local_path="/not/a/real/path", |
|
|
) |
|
|
self.lora_manager.add_dummy_lora(dummy_lora_request, |
|
|
rank=LORA_WARMUP_RANK) |
|
|
dummy_lora_requests.append(dummy_lora_request) |
|
|
dummy_lora_requests_per_seq = [ |
|
|
dummy_lora_requests[idx % len(dummy_lora_requests)] |
|
|
for idx in range(max_num_seqs) |
|
|
] |
|
|
|
|
|
|
|
|
|
|
|
seqs: List[SequenceGroupMetadata] = [] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.vision_language_config: |
|
|
max_num_seqs = min( |
|
|
max_num_seqs, |
|
|
int(max_num_batched_tokens / |
|
|
self.vision_language_config.image_feature_size)) |
|
|
for group_id in range(max_num_seqs): |
|
|
seq_len = (max_num_batched_tokens // max_num_seqs + |
|
|
(group_id < max_num_batched_tokens % max_num_seqs)) |
|
|
seq_data, fake_multi_modal_input = _prepare_fake_inputs( |
|
|
seq_len, self.vision_language_config) |
|
|
seq = SequenceGroupMetadata( |
|
|
request_id=str(group_id), |
|
|
is_prompt=True, |
|
|
seq_data={group_id: seq_data}, |
|
|
sampling_params=sampling_params, |
|
|
block_tables=None, |
|
|
lora_request=dummy_lora_requests_per_seq[group_id] |
|
|
if dummy_lora_requests_per_seq else None, |
|
|
multi_modal_data=fake_multi_modal_input, |
|
|
) |
|
|
seqs.append(seq) |
|
|
|
|
|
|
|
|
num_layers = self.model_config.get_num_layers(self.parallel_config) |
|
|
kv_caches = [None] * num_layers |
|
|
self.execute_model(seqs, kv_caches) |
|
|
torch.cuda.synchronize() |
|
|
return |
|
|
|
|
|
def remove_all_loras(self) -> bool: |
|
|
if not self.lora_manager: |
|
|
raise RuntimeError("LoRA is not enabled.") |
|
|
return self.lora_manager.remove_all_loras() |
|
|
|
|
|
def set_active_loras(self, lora_requests: Set[LoRARequest], |
|
|
lora_mapping: LoRAMapping) -> None: |
|
|
if not self.lora_manager: |
|
|
raise RuntimeError("LoRA is not enabled.") |
|
|
self.lora_manager.set_active_loras(lora_requests, lora_mapping) |
|
|
|
|
|
def add_lora(self, lora_request: LoRARequest) -> bool: |
|
|
if not self.lora_manager: |
|
|
raise RuntimeError("LoRA is not enabled.") |
|
|
return self.lora_manager.add_lora(lora_request) |
|
|
|
|
|
def remove_lora(self, lora_id: int) -> bool: |
|
|
if not self.lora_manager: |
|
|
raise RuntimeError("LoRA is not enabled.") |
|
|
return self.lora_manager.remove_lora(lora_id) |
|
|
|
|
|
def list_loras(self) -> Set[int]: |
|
|
if not self.lora_manager: |
|
|
raise RuntimeError("LoRA is not enabled.") |
|
|
return self.lora_manager.list_loras() |
|
|
|
|
|
@torch.inference_mode() |
|
|
def capture_model(self, kv_caches: List[torch.Tensor]) -> None: |
|
|
"""Cuda graph capture a model. |
|
|
|
|
|
Note that CUDA graph's performance gain is negligible if number |
|
|
of batched tokens are larger than 200. And since CUDA graph |
|
|
requires fixed sized tensors, supporting large/variable batch |
|
|
size requires high GPU memory overhead. Thus, vLLM only captures |
|
|
decoding requests. Mixed batch (chunked prefill + decoding) or |
|
|
prefill requests are not captured. |
|
|
|
|
|
Since it is used for decoding-only, it assumes there's only 1 token |
|
|
per sequence in the batch. |
|
|
""" |
|
|
|
|
|
|
|
|
self.pynccl_backend = pynccl_utils.get_nccl_backend() |
|
|
|
|
|
assert not self.model_config.enforce_eager |
|
|
logger.info("Capturing the model for CUDA graphs. This may lead to " |
|
|
"unexpected consequences if the model is not static. To " |
|
|
"run the model in eager mode, set 'enforce_eager=True' or " |
|
|
"use '--enforce-eager' in the CLI.") |
|
|
logger.info("CUDA graphs can take additional 1~3 GiB memory per GPU. " |
|
|
"If you are running out of memory, consider decreasing " |
|
|
"`gpu_memory_utilization` or enforcing eager mode. " |
|
|
"You can also reduce the `max_num_seqs` as needed " |
|
|
"to decrease memory usage.") |
|
|
start_time = time.perf_counter() |
|
|
|
|
|
|
|
|
max_batch_size = max(_BATCH_SIZES_TO_CAPTURE) |
|
|
input_tokens = torch.zeros(max_batch_size, dtype=torch.long).cuda() |
|
|
input_positions = torch.zeros(max_batch_size, dtype=torch.long).cuda() |
|
|
slot_mapping = torch.empty(max_batch_size, dtype=torch.long).cuda() |
|
|
slot_mapping.fill_(_PAD_SLOT_ID) |
|
|
context_lens = torch.ones(max_batch_size, dtype=torch.int32).cuda() |
|
|
block_tables = torch.from_numpy(self.graph_block_tables).cuda() |
|
|
|
|
|
graph_batch_size = _get_graph_batch_size( |
|
|
self.scheduler_config.max_num_seqs) |
|
|
batch_size_capture_list = [ |
|
|
bs for bs in _BATCH_SIZES_TO_CAPTURE if bs <= graph_batch_size |
|
|
] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with custom_all_reduce.capture(): |
|
|
|
|
|
|
|
|
for batch_size in reversed(batch_size_capture_list): |
|
|
|
|
|
decode_metadata = self.attn_backend.make_metadata( |
|
|
is_prompt=False, |
|
|
prompt_lens=None, |
|
|
prompt_lens_tensor=None, |
|
|
max_subquery_len=None, |
|
|
max_context_len=self.max_context_len_to_capture, |
|
|
max_prompt_len=None, |
|
|
subquery_start_loc=None, |
|
|
seq_start_loc=None, |
|
|
context_lens=context_lens[:batch_size], |
|
|
block_tables=block_tables[:batch_size], |
|
|
use_cuda_graph=True, |
|
|
) |
|
|
attn_metadata = AttentionMetadata( |
|
|
num_prefills=0, |
|
|
num_prefill_tokens=0, |
|
|
num_decode_tokens=batch_size, |
|
|
slot_mapping=slot_mapping[:batch_size], |
|
|
prefill_metadata=None, |
|
|
decode_metadata=decode_metadata, |
|
|
kv_cache_dtype=self.kv_cache_dtype, |
|
|
) |
|
|
|
|
|
if self.lora_config: |
|
|
lora_mapping = LoRAMapping( |
|
|
[0] * batch_size, |
|
|
[0] * batch_size, |
|
|
) |
|
|
self.set_active_loras(set(), lora_mapping) |
|
|
|
|
|
graph_runner = CUDAGraphRunner(self.model) |
|
|
graph_runner.capture( |
|
|
input_tokens[:batch_size], |
|
|
input_positions[:batch_size], |
|
|
kv_caches, |
|
|
attn_metadata, |
|
|
memory_pool=self.graph_memory_pool, |
|
|
) |
|
|
self.graph_memory_pool = graph_runner.graph.pool() |
|
|
self.graph_runners[batch_size] = graph_runner |
|
|
|
|
|
end_time = time.perf_counter() |
|
|
elapsed_time = end_time - start_time |
|
|
|
|
|
logger.info(f"Graph capturing finished in {elapsed_time:.0f} secs.") |
|
|
|
|
|
def __del__(self) -> None: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.graph_runners.clear() |
|
|
self.pynccl_backend = None |
|
|
|
|
|
@property |
|
|
def vocab_size(self) -> int: |
|
|
return self.model_config.get_vocab_size() |
|
|
|
|
|
|
|
|
class CUDAGraphRunner: |
|
|
|
|
|
def __init__(self, model: nn.Module): |
|
|
self.model = model |
|
|
self.input_buffers: Dict[str, torch.Tensor] = {} |
|
|
self.output_buffers: Dict[str, torch.Tensor] = {} |
|
|
|
|
|
self._graph: Optional[torch.cuda.CUDAGraph] = None |
|
|
|
|
|
@property |
|
|
def graph(self): |
|
|
assert self._graph is not None |
|
|
return self._graph |
|
|
|
|
|
def capture( |
|
|
self, |
|
|
input_ids: torch.Tensor, |
|
|
positions: torch.Tensor, |
|
|
kv_caches: List[torch.Tensor], |
|
|
attn_metadata: AttentionMetadata, |
|
|
memory_pool, |
|
|
**kwargs, |
|
|
) -> None: |
|
|
assert self._graph is None |
|
|
|
|
|
|
|
|
|
|
|
with _maybe_pynccl(): |
|
|
self.model( |
|
|
input_ids, |
|
|
positions, |
|
|
kv_caches, |
|
|
attn_metadata, |
|
|
**kwargs, |
|
|
) |
|
|
torch.cuda.synchronize() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self._graph = torch.cuda.CUDAGraph() |
|
|
with torch.cuda.graph(self._graph, pool=memory_pool): |
|
|
with _maybe_pynccl(): |
|
|
hidden_states = self.model( |
|
|
input_ids, |
|
|
positions, |
|
|
kv_caches, |
|
|
attn_metadata, |
|
|
**kwargs, |
|
|
) |
|
|
torch.cuda.synchronize() |
|
|
|
|
|
|
|
|
self.input_buffers = { |
|
|
"input_ids": input_ids, |
|
|
"positions": positions, |
|
|
"kv_caches": kv_caches, |
|
|
"slot_mapping": attn_metadata.slot_mapping, |
|
|
"context_lens": attn_metadata.decode_metadata.context_lens, |
|
|
"block_tables": attn_metadata.decode_metadata.block_tables, |
|
|
} |
|
|
self.output_buffers = {"hidden_states": hidden_states} |
|
|
return |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.Tensor, |
|
|
positions: torch.Tensor, |
|
|
kv_caches: List[torch.Tensor], |
|
|
attn_metadata: AttentionMetadata, |
|
|
**kwargs, |
|
|
) -> torch.Tensor: |
|
|
|
|
|
del kv_caches |
|
|
|
|
|
|
|
|
self.input_buffers["input_ids"].copy_(input_ids, non_blocking=True) |
|
|
self.input_buffers["positions"].copy_(positions, non_blocking=True) |
|
|
self.input_buffers["slot_mapping"].copy_(attn_metadata.slot_mapping, |
|
|
non_blocking=True) |
|
|
self.input_buffers["context_lens"].copy_( |
|
|
attn_metadata.decode_metadata.context_lens, non_blocking=True) |
|
|
self.input_buffers["block_tables"].copy_( |
|
|
attn_metadata.decode_metadata.block_tables, non_blocking=True) |
|
|
|
|
|
self.graph.replay() |
|
|
|
|
|
|
|
|
return self.output_buffers["hidden_states"] |
|
|
|
|
|
def __call__(self, *args, **kwargs): |
|
|
return self.forward(*args, **kwargs) |
|
|
|
|
|
|
|
|
@contextlib.contextmanager |
|
|
def _maybe_pynccl(): |
|
|
if pynccl_utils.is_initialized( |
|
|
) and not custom_all_reduce.is_initialized(): |
|
|
with with_pynccl_for_all_reduce(): |
|
|
yield |
|
|
else: |
|
|
yield |
|
|
|
|
|
|
|
|
def _get_graph_batch_size(batch_size: int) -> int: |
|
|
"""Returns the padded batch size given actual batch size. |
|
|
|
|
|
Batch sizes are 1, 2, 4, _BATCH_SIZE_ALIGNMENT, |
|
|
2*_BATCH_SIZE_ALIGNMENT, 3*_BATCH_SIZE_ALIGNMENT... |
|
|
""" |
|
|
if batch_size <= 2: |
|
|
return batch_size |
|
|
elif batch_size <= 4: |
|
|
return 4 |
|
|
else: |
|
|
return ((batch_size + _BATCH_SIZE_ALIGNMENT - 1) // |
|
|
_BATCH_SIZE_ALIGNMENT * _BATCH_SIZE_ALIGNMENT) |
|
|
|
|
|
|
|
|
def _prepare_fake_inputs( |
|
|
seq_len: int, vision_language_config: Optional[VisionLanguageConfig]): |
|
|
"""Prepare fake inputs for profile run.""" |
|
|
if vision_language_config: |
|
|
prompt_tokens = [ |
|
|
vision_language_config.image_token_id |
|
|
] * vision_language_config.image_feature_size + [0] * ( |
|
|
seq_len - vision_language_config.image_feature_size) |
|
|
fake_image_input = MultiModalData( |
|
|
type=MultiModalData.Type.IMAGE, |
|
|
data=torch.zeros(vision_language_config.image_input_shape, |
|
|
dtype=torch.float16)) |
|
|
else: |
|
|
prompt_tokens = [0] * seq_len |
|
|
fake_image_input = None |
|
|
return SequenceData(prompt_tokens), fake_image_input |