Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,789 Bytes
f06aba5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
import os
import sys
import time
import warnings
import argparse
import yaml
import torch
import math
import logging
import transformers
import diffusers
from pathlib import Path
from transformers import Qwen2Model, Qwen2TokenizerFast
from accelerate import Accelerator, InitProcessGroupKwargs
from accelerate.utils import ProjectConfiguration, set_seed
from accelerate.logging import get_logger
from diffusers.models import AutoencoderKL
from diffusers.optimization import get_scheduler
from diffusers import FlowMatchEulerDiscreteScheduler
from diffusers.training_utils import EMAModel
from diffusers.utils.import_utils import is_xformers_available
from transformers import AutoTokenizer, AutoModel
from train_dataset import build_dataloader
from longcat_image.models import LongCatImageTransformer2DModel
from longcat_image.utils import LogBuffer
from longcat_image.utils import pack_latents, unpack_latents, calculate_shift, prepare_pos_ids
warnings.filterwarnings("ignore") # ignore warning
current_file_path = Path(__file__).resolve()
sys.path.insert(0, str(current_file_path.parent.parent))
logger = get_logger(__name__)
def train(global_step=0):
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
# Train!
total_batch_size = args.train_batch_size * \
accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataloader.dataset)}")
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
last_tic = time.time()
# Now you train the model
for epoch in range(first_epoch, args.num_train_epochs + 1):
data_time_start = time.time()
data_time_all = 0
for step, batch in enumerate(train_dataloader):
image = batch['images']
data_time_all += time.time() - data_time_start
with torch.no_grad():
latents = vae.encode(image.to(weight_dtype).to(accelerator.device)).latent_dist.sample()
latents = latents.to(dtype=(weight_dtype))
latents = (latents - vae.config.shift_factor) * vae.config.scaling_factor
text_input_ids = batch['input_ids'].to(accelerator.device)
text_attention_mask = batch['attention_mask'].to(accelerator.device)
with torch.no_grad():
text_output = text_encoder(
input_ids=text_input_ids,
attention_mask=text_attention_mask,
output_hidden_states=True
)
prompt_embeds = text_output.hidden_states[-1].clone().detach()
prompt_embeds = prompt_embeds.to(weight_dtype)
prompt_embeds = prompt_embeds[:,args.prompt_template_encode_start_idx: -args.prompt_template_encode_end_idx ,:]
# Sample a random timestep for each image
grad_norm = None
with accelerator.accumulate(transformer):
# Predict the noise residual
optimizer.zero_grad()
# logit-normal
sigmas = torch.sigmoid(torch.randn((latents.shape[0],), device=accelerator.device, dtype=latents.dtype))
if args.use_dynamic_shifting:
sigmas = noise_scheduler.time_shift(mu, 1.0, sigmas)
timesteps = sigmas * 1000.0
sigmas = sigmas.view(-1, 1, 1, 1)
noise = torch.randn_like(latents)
noisy_latents = (1 - sigmas) * latents + sigmas * noise
noisy_latents = noisy_latents.to(weight_dtype)
packed_noisy_latents = pack_latents(
noisy_latents,
batch_size=latents.shape[0],
num_channels_latents=latents.shape[1],
height=latents.shape[2],
width=latents.shape[3],
)
guidance = None
img_ids = prepare_pos_ids(modality_id=1,
type='image',
start=(prompt_embeds.shape[1], prompt_embeds.shape[1]),
height=latents.shape[2]//2,
width=latents.shape[3]//2).to(accelerator.device, dtype=torch.float64)
timesteps = (
torch.tensor(timesteps)
.expand(noisy_latents.shape[0])
.to(device=accelerator.device)
/ 1000
)
text_ids = prepare_pos_ids(modality_id=0,
type='text',
start=(0, 0),
num_token=prompt_embeds.shape[1]).to(accelerator.device, torch.float64)
with torch.nn.attention.sdpa_kernel(torch.nn.attention.SDPBackend.FLASH_ATTENTION):
model_pred = transformer(packed_noisy_latents, prompt_embeds, timesteps,
img_ids, text_ids, guidance, return_dict=False)[0]
model_pred = unpack_latents(
model_pred,
height=latents.shape[2] * 8,
width=latents.shape[3] * 8,
vae_scale_factor=16,
)
target = noise - latents
loss = torch.mean(
((model_pred.float() - target.float()) ** 2).reshape(
target.shape[0], -1
),
1,
).mean()
accelerator.backward(loss)
if accelerator.sync_gradients:
grad_norm = transformer.get_global_grad_norm()
optimizer.step()
if not accelerator.optimizer_step_was_skipped:
lr_scheduler.step()
if accelerator.sync_gradients and args.use_ema:
model_ema.step(transformer.parameters())
lr = lr_scheduler.get_last_lr()[0]
if accelerator.sync_gradients:
bsz, ic, ih, iw = image.shape
logs = {"loss": accelerator.gather(loss).mean().item(), 'aspect_ratio': (ih*1.0 / iw)}
if grad_norm is not None:
logs.update(grad_norm=accelerator.gather(grad_norm).mean().item())
log_buffer.update(logs)
if (step + 1) % args.log_interval == 0 or (step + 1) == 1:
t = (time.time() - last_tic) / args.log_interval
t_d = data_time_all / args.log_interval
log_buffer.average()
info = f"Step={step+1}, Epoch={epoch}, global_step={global_step}, time_all:{t:.3f}, time_data:{t_d:.3f}, lr:{lr:.3e}, s:(ch:{latents.shape[1]},h:{latents.shape[2]},w:{latents.shape[3]}), "
info += ', '.join([f"{k}:{v:.4f}" for k,v in log_buffer.output.items()])
logger.info(info)
last_tic = time.time()
log_buffer.clear()
data_time_all = 0
logs.update(lr=lr)
accelerator.log(logs, step=global_step)
global_step += 1
data_time_start = time.time()
if global_step != 0 and global_step % args.save_model_steps == 0:
save_path = os.path.join(args.work_dir, f'checkpoints-{global_step}')
if args.use_ema:
model_ema.store(transformer.parameters())
model_ema.copy_to(transformer.parameters())
accelerator.save_state(save_path)
if args.use_ema:
model_ema.restore(transformer.parameters())
logger.info(f"Saved state to {save_path} (global_step: {global_step})")
accelerator.wait_for_everyone()
if global_step >= args.max_train_steps:
break
def parse_args():
parser = argparse.ArgumentParser(description="Process some integers.")
parser.add_argument("--config", type=str, default='', help="config")
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
)
args = parser.parse_args()
return args
if __name__ == '__main__':
cur_dir = os.path.dirname(os.path.abspath(__file__))
args = parse_args()
if args.config != '' and os.path.exists(args.config):
config = yaml.safe_load(open(args.config, 'r'))
else:
config = yaml.safe_load(open(f'{cur_dir}/train_config.yaml', 'r'))
args_dict = vars(args)
args_dict.update(config)
args = argparse.Namespace(**args_dict)
os.umask(0o000)
os.makedirs(args.work_dir, exist_ok=True)
log_dir = args.work_dir + f'/logs'
os.makedirs(log_dir, exist_ok=True)
accelerator_project_config = ProjectConfiguration(project_dir=args.work_dir, logging_dir=log_dir)
with open(f'{log_dir}/train.yaml', 'w') as f:
yaml.dump(args_dict, f)
accelerator = Accelerator(
mixed_precision=args.mixed_precision,
gradient_accumulation_steps=args.gradient_accumulation_steps,
log_with=args.report_to,
project_config= accelerator_project_config,
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
if args.seed is not None:
set_seed(args.seed)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
logger.info(f'using weight_dtype {weight_dtype}!!!')
if args.diffusion_pretrain_weight:
transformer = LongCatImageTransformer2DModel.from_pretrained(args.diffusion_pretrain_weight, ignore_mismatched_sizes=False)
logger.info(f'successful load model weight {args.diffusion_pretrain_weight}!!!')
else:
transformer = LongCatImageTransformer2DModel.from_pretrained(os.path.join(args.pretrained_model_name_or_path, "transformer"), ignore_mismatched_sizes=False)
logger.info(f'successful load model weight {args.pretrained_model_name_or_path+"/transformer"}!!!')
transformer = transformer.train()
total_trainable_params = sum(p.numel() for p in transformer.parameters() if p.requires_grad)
logger.info(f">>>>>> total_trainable_params: {total_trainable_params}")
if args.use_ema:
model_ema = EMAModel(transformer.parameters(), decay=args.ema_rate)
else:
model_ema = None
vae_dtype = torch.float32
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path, subfolder="vae", torch_dtype=weight_dtype).cuda().eval()
text_encoder = AutoModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder" , torch_dtype=weight_dtype, trust_remote_code=True).cuda().eval()
tokenizer = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path, subfolder="tokenizer" , torch_dtype=weight_dtype, trust_remote_code=True)
logger.info("all models loaded successfully")
# build models
noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
args.pretrained_model_name_or_path, subfolder="scheduler")
latent_size = int(args.resolution) // 8
mu = calculate_shift(
(latent_size//2)**2,
noise_scheduler.config.base_image_seq_len,
noise_scheduler.config.max_image_seq_len,
noise_scheduler.config.base_shift,
noise_scheduler.config.max_shift,
)
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
for i, model in enumerate(models):
model.save_pretrained(os.path.join(output_dir, "transformer"))
if len(weights) != 0:
weights.pop()
def load_model_hook(models, input_dir):
while len(models) > 0:
# pop models so that they are not loaded again
model = models.pop()
# load diffusers style into model
load_model = LongCatImageTransformer2DModel.from_pretrained(
input_dir, subfolder="transformer")
model.register_to_config(**load_model.config)
model.load_state_dict(load_model.state_dict())
del load_model
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
if args.gradient_checkpointing:
transformer.enable_gradient_checkpointing()
# Enable TF32 for faster training on Ampere GPUs,
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
)
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
params_to_optimize = transformer.parameters()
optimizer = optimizer_class(
params_to_optimize,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
transformer.to(accelerator.device, dtype=weight_dtype)
if args.use_ema:
model_ema.to(accelerator.device, dtype=weight_dtype)
train_dataloader = build_dataloader(args, args.data_txt_root, tokenizer, args.resolution,)
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * accelerator.num_processes,
num_cycles=args.lr_num_cycles,
power=args.lr_power,
)
global_step = 0
first_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint != "latest":
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = os.listdir(args.work_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
if path is None:
logger.info(f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run.")
args.resume_from_checkpoint = None
initial_global_step = 0
else:
logger.info(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(args.work_dir, path))
global_step = int(path.split("-")[1])
initial_global_step = global_step
first_epoch = global_step // num_update_steps_per_epoch
timestamp = time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime())
if accelerator.is_main_process:
tracker_config = dict(vars(args))
try:
accelerator.init_trackers('sft', tracker_config)
except Exception as e:
logger.warning(f'get error in save config, {e}')
accelerator.init_trackers(f"sft_{timestamp}")
transformer, optimizer, _, _ = accelerator.prepare(
transformer, optimizer, train_dataloader, lr_scheduler)
log_buffer = LogBuffer()
train(global_step=global_step)
|