File size: 16,931 Bytes
99582fb
de41cc1
 
 
 
 
d0e03bd
de41cc1
 
d0e03bd
85df522
de41cc1
d0e03bd
 
 
85df522
d0e03bd
 
85df522
 
 
d0e03bd
 
85df522
 
 
 
 
d0e03bd
 
 
 
85df522
d0e03bd
85df522
d0e03bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de41cc1
6e4901a
de41cc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e4901a
de41cc1
 
 
d0e03bd
de41cc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0e03bd
 
 
 
 
f81c51a
d0e03bd
 
 
 
 
de41cc1
 
 
 
 
 
d0e03bd
de41cc1
d0e03bd
de41cc1
 
 
 
6e4901a
d0e03bd
 
 
6e4901a
de41cc1
 
 
d0e03bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de41cc1
d0e03bd
 
 
 
 
 
 
 
de41cc1
d0e03bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de41cc1
d0e03bd
 
 
 
 
 
 
 
de41cc1
 
d0e03bd
 
 
 
 
 
 
 
 
de41cc1
 
d0e03bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de41cc1
 
 
 
 
 
 
 
 
 
 
85df522
de41cc1
 
 
 
 
 
d0e03bd
 
de41cc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5aefb3
 
de41cc1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
import spaces
import gradio as gr
import torch
from PIL import Image
from transformers import AutoProcessor
from longcat_image.models import LongCatImageTransformer2DModel
from longcat_image.pipelines import LongCatImageEditPipeline, LongCatImagePipeline
import numpy as np

# Load models directly at startup
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Text-to-Image Model
t2i_model_id = 'meituan-longcat/LongCat-Image'
print(f"🔄 Loading Text-to-Image model from {t2i_model_id}...")

t2i_text_processor = AutoProcessor.from_pretrained(
    t2i_model_id, 
    subfolder='tokenizer'
)

t2i_transformer = LongCatImageTransformer2DModel.from_pretrained(
    t2i_model_id, 
    subfolder='transformer',
    torch_dtype=torch.bfloat16, 
    use_safetensors=True
).to(device)

t2i_pipe = LongCatImagePipeline.from_pretrained(
    t2i_model_id,
    transformer=t2i_transformer,
    text_processor=t2i_text_processor,
)
t2i_pipe.to(device, torch.bfloat16)

print(f"✅ Text-to-Image model loaded successfully")

# Image Edit Model
edit_model_id = 'meituan-longcat/LongCat-Image-Edit'
print(f"🔄 Loading Image Edit model from {edit_model_id}...")

edit_text_processor = AutoProcessor.from_pretrained(
    edit_model_id, 
    subfolder='tokenizer'
)

edit_transformer = LongCatImageTransformer2DModel.from_pretrained(
    edit_model_id, 
    subfolder='transformer',
    torch_dtype=torch.bfloat16, 
    use_safetensors=True
).to(device)

edit_pipe = LongCatImageEditPipeline.from_pretrained(
    edit_model_id,
    transformer=edit_transformer,
    text_processor=edit_text_processor,
)
edit_pipe.to(device, torch.bfloat16)

print(f"✅ Image Edit model loaded successfully on {device}")

@spaces.GPU(duration=120)
def generate_image(
    prompt: str,
    negative_prompt: str,
    width: int,
    height: int,
    guidance_scale: float,
    num_inference_steps: int,
    seed: int,
    enable_cfg_renorm: bool,
    enable_prompt_rewrite: bool,
    progress=gr.Progress()
):
    """Generate image from text prompt"""
    
    if not prompt or prompt.strip() == "":
        raise gr.Error("Please enter a prompt")
    
    try:
        progress(0.1, desc="Preparing generation...")
        
        progress(0.2, desc="Generating image...")
        
        # Set random seed for reproducibility
        generator = torch.Generator("cuda" if torch.cuda.is_available() else "cpu").manual_seed(seed)
        
        # Run the pipeline
        with torch.inference_mode():
            output = t2i_pipe(
                prompt,
                negative_prompt=negative_prompt,
                height=height,
                width=width,
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps,
                num_images_per_prompt=1,
                generator=generator,
                enable_cfg_renorm=enable_cfg_renorm,
                enable_prompt_rewrite=enable_prompt_rewrite
            )
        
        progress(1.0, desc="Done!")
        
        generated_image = output.images[0]
        
        return generated_image
        
    except Exception as e:
        raise gr.Error(f"Error during image generation: {str(e)}")

@spaces.GPU(duration=120)
def edit_image(
    input_image: Image.Image,
    prompt: str,
    negative_prompt: str,
    guidance_scale: float,
    num_inference_steps: int,
    seed: int,
    progress=gr.Progress()
):
    """Edit image based on text prompt"""
    
    if input_image is None:
        raise gr.Error("Please upload an image first")
    
    if not prompt or prompt.strip() == "":
        raise gr.Error("Please enter an edit instruction")
    
    try:
        progress(0.1, desc="Preparing image...")
        
        # Convert to RGB if needed
        if input_image.mode != 'RGB':
            input_image = input_image.convert('RGB')
        
        progress(0.2, desc="Generating edited image...")
        
        # Set random seed for reproducibility
        generator = torch.Generator("cuda" if torch.cuda.is_available() else "cpu").manual_seed(seed)
        
        # Run the pipeline
        with torch.inference_mode():
            output = edit_pipe(
                input_image,
                prompt,
                negative_prompt=negative_prompt,
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps,
                num_images_per_prompt=1,
                generator=generator
            )
        
        progress(1.0, desc="Done!")
        
        edited_image = output.images[0]
        
        return edited_image
        
    except Exception as e:
        raise gr.Error(f"Error during image editing: {str(e)}")

# Example for image editing
edit_example_image_url = "https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.png"
edit_example_data = [
    [edit_example_image_url, "Add a mustache", "", 4.5, 50, 42],
]

# Examples for text-to-image
t2i_example_prompts = [
    ["一个年轻的亚裔女性,身穿黄色针织衫,搭配白色项链。她的双手放在膝盖上,表情恬静。背景是一堵粗糙的砖墙,午后的阳光温暖地洒在她身上,营造出一种宁静而温馨的氛围。", "", 1344, 768, 4.5, 50, 43, True, True],
    ["A serene mountain landscape at sunset with golden clouds", "", 1344, 768, 4.5, 50, 42, True, True],
    ["A cute robot sitting at a desk, digital art style", "", 1024, 1024, 4.5, 50, 44, True, True],
]

# Build Gradio interface
with gr.Blocks(fill_height=True) as demo:
    gr.HTML("""
        <div style="text-align: center; margin-bottom: 20px;">
            <h1>🎨 LongCat Image Studio</h1>
            <p style="font-size: 16px; color: #666;">
                Generate images from text or edit existing images with AI-powered tools
            </p>
            <p style="font-size: 14px; margin-top: 10px;">
                Built with <a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" style="color: #4A90E2; text-decoration: none;">anycoder</a>
            </p>
            <p style="font-size: 12px; color: #888; margin-top: 5px;">
                ⚡ Powered by Zero-GPU | 🤗 Models: 
                <a href="https://huggingface.co/meituan-longcat/LongCat-Image" target="_blank" style="color: #4A90E2;">Text-to-Image</a> & 
                <a href="https://huggingface.co/meituan-longcat/LongCat-Image-Edit" target="_blank" style="color: #4A90E2;">Image Edit</a>
            </p>
        </div>
    """)
    
    with gr.Tabs():
        # Text-to-Image Tab
        with gr.TabItem("🖼️ Text to Image"):
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown("### 📝 Prompt")
                    t2i_prompt = gr.Textbox(
                        label="Image Description",
                        placeholder="Describe the image you want to generate (supports English and Chinese)",
                        lines=5
                    )
                    
                    with gr.Accordion("⚙️ Settings", open=True):
                        t2i_negative_prompt = gr.Textbox(
                            label="Negative Prompt (Optional)",
                            placeholder="What you don't want in the image",
                            lines=2
                        )
                        
                        with gr.Row():
                            t2i_width = gr.Slider(
                                minimum=512,
                                maximum=2048,
                                value=1344,
                                step=64,
                                label="Width",
                            )
                            
                            t2i_height = gr.Slider(
                                minimum=512,
                                maximum=2048,
                                value=768,
                                step=64,
                                label="Height",
                            )
                        
                        t2i_guidance_scale = gr.Slider(
                            minimum=1.0,
                            maximum=10.0,
                            value=4.5,
                            step=0.5,
                            label="Guidance Scale",
                            info="Higher values = stronger adherence to prompt"
                        )
                        
                        t2i_num_inference_steps = gr.Slider(
                            minimum=20,
                            maximum=100,
                            value=50,
                            step=5,
                            label="Inference Steps",
                            info="More steps = higher quality but slower"
                        )
                        
                        t2i_seed = gr.Slider(
                            minimum=0,
                            maximum=999999,
                            value=42,
                            step=1,
                            label="Random Seed",
                        )
                        
                        t2i_enable_cfg_renorm = gr.Checkbox(
                            label="Enable CFG Renormalization",
                            value=True,
                            info="Improves image quality"
                        )
                        
                        t2i_enable_prompt_rewrite = gr.Checkbox(
                            label="Enable Prompt Rewrite",
                            value=True,
                            info="Uses text encoder as built-in prompt enhancer"
                        )
                    
                    generate_btn = gr.Button("✨ Generate Image", variant="primary", size="lg")
                    
                with gr.Column(scale=1):
                    gr.Markdown("### 🎯 Generated Image")
                    t2i_output = gr.Image(
                        label="Output",
                        type="pil",
                        height=500,
                        buttons=["download"]
                    )
                    
                    gr.Markdown("### 💡 Tips")
                    gr.Markdown("""
                    - Be detailed and specific in your descriptions
                    - Supports both English and Chinese prompts
                    - Try different aspect ratios for varied compositions
                    - Enable prompt rewrite for enhanced descriptions
                    - Higher inference steps = better quality (but slower)
                    """)
            
            gr.Markdown("### 📝 Example Prompts")
            gr.Examples(
                examples=t2i_example_prompts,
                inputs=[t2i_prompt, t2i_negative_prompt, t2i_width, t2i_height, t2i_guidance_scale, t2i_num_inference_steps, t2i_seed, t2i_enable_cfg_renorm, t2i_enable_prompt_rewrite],
                outputs=t2i_output,
                fn=generate_image,
                cache_examples=False,
                label="Click to try these examples"
            )
        
        # Image Edit Tab
        with gr.TabItem("✏️ Image Edit"):
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown("### 📤 Input")
                    input_image = gr.Image(
                        label="Upload Image",
                        type="pil",
                        sources=["upload", "clipboard"],
                        height=400
                    )
                    
                    prompt = gr.Textbox(
                        label="Edit Instruction",
                        placeholder="Describe how you want to edit the image",
                        lines=3
                    )
                    
                    with gr.Accordion("⚙️ Advanced Settings", open=False):
                        negative_prompt = gr.Textbox(
                            label="Negative Prompt (Optional)",
                            placeholder="What you don't want in the image",
                            lines=2
                        )
                        
                        guidance_scale = gr.Slider(
                            minimum=1.0,
                            maximum=10.0,
                            value=4.5,
                            step=0.5,
                            label="Guidance Scale",
                            info="Higher values = stronger adherence to prompt"
                        )
                        
                        num_inference_steps = gr.Slider(
                            minimum=20,
                            maximum=100,
                            value=50,
                            step=5,
                            label="Inference Steps",
                            info="More steps = higher quality but slower"
                        )
                        
                        seed = gr.Slider(
                            minimum=0,
                            maximum=999999,
                            value=42,
                            step=1,
                            label="Random Seed",
                        )
                    
                    edit_btn = gr.Button("✨ Edit Image", variant="primary", size="lg")
                    
                with gr.Column(scale=1):
                    gr.Markdown("### 🎯 Output")
                    output_image = gr.Image(
                        label="Edited Image",
                        type="pil",
                        height=400,
                        buttons=["download"]
                    )
                    
                    gr.Markdown("### 💡 Tips")
                    gr.Markdown("""
                    - Upload a clear, well-lit image for best results
                    - Be specific in your edit instructions
                    - Supports both English and Chinese prompts
                    - Try different guidance scales for varied results
                    """)
            
            gr.Markdown("### 📝 Example")
            gr.Examples(
                examples=edit_example_data,
                inputs=[input_image, prompt, negative_prompt, guidance_scale, num_inference_steps, seed],
                outputs=output_image,
                fn=edit_image,
                cache_examples=False,
                label="Click to try this example"
            )
    
    gr.HTML("""
        <div style="padding: 10px; background-color: #f0f7ff; border-radius: 8px; margin: 20px 0;">
            <p style="margin: 0; font-size: 12px; color: #555;">
                ⏱️ <strong>Note:</strong> Zero-GPU provides 120 seconds of GPU time per request. 
                Models are loaded at startup from Hugging Face Hub.
                Processing typically takes 30-60 seconds depending on settings.
            </p>
        </div>
    """)
    
    # Event handlers
    generate_btn.click(
        fn=generate_image,
        inputs=[
            t2i_prompt,
            t2i_negative_prompt,
            t2i_width,
            t2i_height,
            t2i_guidance_scale,
            t2i_num_inference_steps,
            t2i_seed,
            t2i_enable_cfg_renorm,
            t2i_enable_prompt_rewrite
        ],
        outputs=t2i_output,
        api_visibility="public"
    )
    
    edit_btn.click(
        fn=edit_image,
        inputs=[
            input_image,
            prompt,
            negative_prompt,
            guidance_scale,
            num_inference_steps,
            seed
        ],
        outputs=output_image,
        api_visibility="public"
    )
    
    # Footer
    gr.HTML("""
        <div style="text-align: center; margin-top: 40px; padding: 20px; border-top: 1px solid #eee;">
            <p style="color: #666; font-size: 14px;">
                Powered by <a href="https://huggingface.co/meituan-longcat/LongCat-Image" target="_blank" style="color: #4A90E2;">LongCat Image</a> & 
                <a href="https://huggingface.co/meituan-longcat/LongCat-Image-Edit" target="_blank" style="color: #4A90E2;">LongCat Image Edit</a> | 
                <a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" style="color: #4A90E2;">Built with anycoder</a>
            </p>
        </div>
    """)

# Launch the app
if __name__ == "__main__":
    demo.launch(
        theme=gr.themes.Soft(
            primary_hue="blue",
            secondary_hue="indigo",
            neutral_hue="slate",
            font=gr.themes.GoogleFont("Inter"),
            text_size="lg",
            spacing_size="lg",
            radius_size="md"
        ),
        footer_links=[
            {"label": "Built with anycoder", "url": "https://huggingface.co/spaces/akhaliq/anycoder"}
        ],
        mcp_server=True
    )