Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,931 Bytes
99582fb de41cc1 d0e03bd de41cc1 d0e03bd 85df522 de41cc1 d0e03bd 85df522 d0e03bd 85df522 d0e03bd 85df522 d0e03bd 85df522 d0e03bd 85df522 d0e03bd de41cc1 6e4901a de41cc1 6e4901a de41cc1 d0e03bd de41cc1 d0e03bd f81c51a d0e03bd de41cc1 d0e03bd de41cc1 d0e03bd de41cc1 6e4901a d0e03bd 6e4901a de41cc1 d0e03bd de41cc1 d0e03bd de41cc1 d0e03bd de41cc1 d0e03bd de41cc1 d0e03bd de41cc1 d0e03bd de41cc1 85df522 de41cc1 d0e03bd de41cc1 a5aefb3 de41cc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
import spaces
import gradio as gr
import torch
from PIL import Image
from transformers import AutoProcessor
from longcat_image.models import LongCatImageTransformer2DModel
from longcat_image.pipelines import LongCatImageEditPipeline, LongCatImagePipeline
import numpy as np
# Load models directly at startup
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Text-to-Image Model
t2i_model_id = 'meituan-longcat/LongCat-Image'
print(f"🔄 Loading Text-to-Image model from {t2i_model_id}...")
t2i_text_processor = AutoProcessor.from_pretrained(
t2i_model_id,
subfolder='tokenizer'
)
t2i_transformer = LongCatImageTransformer2DModel.from_pretrained(
t2i_model_id,
subfolder='transformer',
torch_dtype=torch.bfloat16,
use_safetensors=True
).to(device)
t2i_pipe = LongCatImagePipeline.from_pretrained(
t2i_model_id,
transformer=t2i_transformer,
text_processor=t2i_text_processor,
)
t2i_pipe.to(device, torch.bfloat16)
print(f"✅ Text-to-Image model loaded successfully")
# Image Edit Model
edit_model_id = 'meituan-longcat/LongCat-Image-Edit'
print(f"🔄 Loading Image Edit model from {edit_model_id}...")
edit_text_processor = AutoProcessor.from_pretrained(
edit_model_id,
subfolder='tokenizer'
)
edit_transformer = LongCatImageTransformer2DModel.from_pretrained(
edit_model_id,
subfolder='transformer',
torch_dtype=torch.bfloat16,
use_safetensors=True
).to(device)
edit_pipe = LongCatImageEditPipeline.from_pretrained(
edit_model_id,
transformer=edit_transformer,
text_processor=edit_text_processor,
)
edit_pipe.to(device, torch.bfloat16)
print(f"✅ Image Edit model loaded successfully on {device}")
@spaces.GPU(duration=120)
def generate_image(
prompt: str,
negative_prompt: str,
width: int,
height: int,
guidance_scale: float,
num_inference_steps: int,
seed: int,
enable_cfg_renorm: bool,
enable_prompt_rewrite: bool,
progress=gr.Progress()
):
"""Generate image from text prompt"""
if not prompt or prompt.strip() == "":
raise gr.Error("Please enter a prompt")
try:
progress(0.1, desc="Preparing generation...")
progress(0.2, desc="Generating image...")
# Set random seed for reproducibility
generator = torch.Generator("cuda" if torch.cuda.is_available() else "cpu").manual_seed(seed)
# Run the pipeline
with torch.inference_mode():
output = t2i_pipe(
prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=1,
generator=generator,
enable_cfg_renorm=enable_cfg_renorm,
enable_prompt_rewrite=enable_prompt_rewrite
)
progress(1.0, desc="Done!")
generated_image = output.images[0]
return generated_image
except Exception as e:
raise gr.Error(f"Error during image generation: {str(e)}")
@spaces.GPU(duration=120)
def edit_image(
input_image: Image.Image,
prompt: str,
negative_prompt: str,
guidance_scale: float,
num_inference_steps: int,
seed: int,
progress=gr.Progress()
):
"""Edit image based on text prompt"""
if input_image is None:
raise gr.Error("Please upload an image first")
if not prompt or prompt.strip() == "":
raise gr.Error("Please enter an edit instruction")
try:
progress(0.1, desc="Preparing image...")
# Convert to RGB if needed
if input_image.mode != 'RGB':
input_image = input_image.convert('RGB')
progress(0.2, desc="Generating edited image...")
# Set random seed for reproducibility
generator = torch.Generator("cuda" if torch.cuda.is_available() else "cpu").manual_seed(seed)
# Run the pipeline
with torch.inference_mode():
output = edit_pipe(
input_image,
prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=1,
generator=generator
)
progress(1.0, desc="Done!")
edited_image = output.images[0]
return edited_image
except Exception as e:
raise gr.Error(f"Error during image editing: {str(e)}")
# Example for image editing
edit_example_image_url = "https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.png"
edit_example_data = [
[edit_example_image_url, "Add a mustache", "", 4.5, 50, 42],
]
# Examples for text-to-image
t2i_example_prompts = [
["一个年轻的亚裔女性,身穿黄色针织衫,搭配白色项链。她的双手放在膝盖上,表情恬静。背景是一堵粗糙的砖墙,午后的阳光温暖地洒在她身上,营造出一种宁静而温馨的氛围。", "", 1344, 768, 4.5, 50, 43, True, True],
["A serene mountain landscape at sunset with golden clouds", "", 1344, 768, 4.5, 50, 42, True, True],
["A cute robot sitting at a desk, digital art style", "", 1024, 1024, 4.5, 50, 44, True, True],
]
# Build Gradio interface
with gr.Blocks(fill_height=True) as demo:
gr.HTML("""
<div style="text-align: center; margin-bottom: 20px;">
<h1>🎨 LongCat Image Studio</h1>
<p style="font-size: 16px; color: #666;">
Generate images from text or edit existing images with AI-powered tools
</p>
<p style="font-size: 14px; margin-top: 10px;">
Built with <a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" style="color: #4A90E2; text-decoration: none;">anycoder</a>
</p>
<p style="font-size: 12px; color: #888; margin-top: 5px;">
⚡ Powered by Zero-GPU | 🤗 Models:
<a href="https://huggingface.co/meituan-longcat/LongCat-Image" target="_blank" style="color: #4A90E2;">Text-to-Image</a> &
<a href="https://huggingface.co/meituan-longcat/LongCat-Image-Edit" target="_blank" style="color: #4A90E2;">Image Edit</a>
</p>
</div>
""")
with gr.Tabs():
# Text-to-Image Tab
with gr.TabItem("🖼️ Text to Image"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 📝 Prompt")
t2i_prompt = gr.Textbox(
label="Image Description",
placeholder="Describe the image you want to generate (supports English and Chinese)",
lines=5
)
with gr.Accordion("⚙️ Settings", open=True):
t2i_negative_prompt = gr.Textbox(
label="Negative Prompt (Optional)",
placeholder="What you don't want in the image",
lines=2
)
with gr.Row():
t2i_width = gr.Slider(
minimum=512,
maximum=2048,
value=1344,
step=64,
label="Width",
)
t2i_height = gr.Slider(
minimum=512,
maximum=2048,
value=768,
step=64,
label="Height",
)
t2i_guidance_scale = gr.Slider(
minimum=1.0,
maximum=10.0,
value=4.5,
step=0.5,
label="Guidance Scale",
info="Higher values = stronger adherence to prompt"
)
t2i_num_inference_steps = gr.Slider(
minimum=20,
maximum=100,
value=50,
step=5,
label="Inference Steps",
info="More steps = higher quality but slower"
)
t2i_seed = gr.Slider(
minimum=0,
maximum=999999,
value=42,
step=1,
label="Random Seed",
)
t2i_enable_cfg_renorm = gr.Checkbox(
label="Enable CFG Renormalization",
value=True,
info="Improves image quality"
)
t2i_enable_prompt_rewrite = gr.Checkbox(
label="Enable Prompt Rewrite",
value=True,
info="Uses text encoder as built-in prompt enhancer"
)
generate_btn = gr.Button("✨ Generate Image", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("### 🎯 Generated Image")
t2i_output = gr.Image(
label="Output",
type="pil",
height=500,
buttons=["download"]
)
gr.Markdown("### 💡 Tips")
gr.Markdown("""
- Be detailed and specific in your descriptions
- Supports both English and Chinese prompts
- Try different aspect ratios for varied compositions
- Enable prompt rewrite for enhanced descriptions
- Higher inference steps = better quality (but slower)
""")
gr.Markdown("### 📝 Example Prompts")
gr.Examples(
examples=t2i_example_prompts,
inputs=[t2i_prompt, t2i_negative_prompt, t2i_width, t2i_height, t2i_guidance_scale, t2i_num_inference_steps, t2i_seed, t2i_enable_cfg_renorm, t2i_enable_prompt_rewrite],
outputs=t2i_output,
fn=generate_image,
cache_examples=False,
label="Click to try these examples"
)
# Image Edit Tab
with gr.TabItem("✏️ Image Edit"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 📤 Input")
input_image = gr.Image(
label="Upload Image",
type="pil",
sources=["upload", "clipboard"],
height=400
)
prompt = gr.Textbox(
label="Edit Instruction",
placeholder="Describe how you want to edit the image",
lines=3
)
with gr.Accordion("⚙️ Advanced Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative Prompt (Optional)",
placeholder="What you don't want in the image",
lines=2
)
guidance_scale = gr.Slider(
minimum=1.0,
maximum=10.0,
value=4.5,
step=0.5,
label="Guidance Scale",
info="Higher values = stronger adherence to prompt"
)
num_inference_steps = gr.Slider(
minimum=20,
maximum=100,
value=50,
step=5,
label="Inference Steps",
info="More steps = higher quality but slower"
)
seed = gr.Slider(
minimum=0,
maximum=999999,
value=42,
step=1,
label="Random Seed",
)
edit_btn = gr.Button("✨ Edit Image", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("### 🎯 Output")
output_image = gr.Image(
label="Edited Image",
type="pil",
height=400,
buttons=["download"]
)
gr.Markdown("### 💡 Tips")
gr.Markdown("""
- Upload a clear, well-lit image for best results
- Be specific in your edit instructions
- Supports both English and Chinese prompts
- Try different guidance scales for varied results
""")
gr.Markdown("### 📝 Example")
gr.Examples(
examples=edit_example_data,
inputs=[input_image, prompt, negative_prompt, guidance_scale, num_inference_steps, seed],
outputs=output_image,
fn=edit_image,
cache_examples=False,
label="Click to try this example"
)
gr.HTML("""
<div style="padding: 10px; background-color: #f0f7ff; border-radius: 8px; margin: 20px 0;">
<p style="margin: 0; font-size: 12px; color: #555;">
⏱️ <strong>Note:</strong> Zero-GPU provides 120 seconds of GPU time per request.
Models are loaded at startup from Hugging Face Hub.
Processing typically takes 30-60 seconds depending on settings.
</p>
</div>
""")
# Event handlers
generate_btn.click(
fn=generate_image,
inputs=[
t2i_prompt,
t2i_negative_prompt,
t2i_width,
t2i_height,
t2i_guidance_scale,
t2i_num_inference_steps,
t2i_seed,
t2i_enable_cfg_renorm,
t2i_enable_prompt_rewrite
],
outputs=t2i_output,
api_visibility="public"
)
edit_btn.click(
fn=edit_image,
inputs=[
input_image,
prompt,
negative_prompt,
guidance_scale,
num_inference_steps,
seed
],
outputs=output_image,
api_visibility="public"
)
# Footer
gr.HTML("""
<div style="text-align: center; margin-top: 40px; padding: 20px; border-top: 1px solid #eee;">
<p style="color: #666; font-size: 14px;">
Powered by <a href="https://huggingface.co/meituan-longcat/LongCat-Image" target="_blank" style="color: #4A90E2;">LongCat Image</a> &
<a href="https://huggingface.co/meituan-longcat/LongCat-Image-Edit" target="_blank" style="color: #4A90E2;">LongCat Image Edit</a> |
<a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" style="color: #4A90E2;">Built with anycoder</a>
</p>
</div>
""")
# Launch the app
if __name__ == "__main__":
demo.launch(
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="indigo",
neutral_hue="slate",
font=gr.themes.GoogleFont("Inter"),
text_size="lg",
spacing_size="lg",
radius_size="md"
),
footer_links=[
{"label": "Built with anycoder", "url": "https://huggingface.co/spaces/akhaliq/anycoder"}
],
mcp_server=True
) |