akhaliq's picture
akhaliq HF Staff
Upload 39 files
f06aba5 verified
raw
history blame
19.5 kB
import os
import sys
import time
import warnings
import argparse
import yaml
import torch
import math
import logging
import transformers
import diffusers
from pathlib import Path
from transformers import Qwen2Model, Qwen2TokenizerFast
from accelerate import Accelerator, InitProcessGroupKwargs
from accelerate.utils import ProjectConfiguration, set_seed
from accelerate.logging import get_logger
from diffusers.models import AutoencoderKL
from diffusers.optimization import get_scheduler
from diffusers import FlowMatchEulerDiscreteScheduler
from diffusers.training_utils import EMAModel
from diffusers.utils.import_utils import is_xformers_available
from transformers import AutoTokenizer, AutoModel, AutoProcessor
from train_dataset import build_dataloader
from longcat_image.models import LongCatImageTransformer2DModel
from longcat_image.utils import LogBuffer
from longcat_image.utils import pack_latents, unpack_latents, calculate_shift, prepare_pos_ids
warnings.filterwarnings("ignore") # ignore warning
current_file_path = Path(__file__).resolve()
sys.path.insert(0, str(current_file_path.parent.parent))
logger = get_logger(__name__)
def train(global_step=0):
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
# Train!
total_batch_size = args.train_batch_size * \
accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataloader.dataset)}")
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
last_tic = time.time()
# Now you train the model
for epoch in range(first_epoch, args.num_train_epochs + 1):
data_time_start = time.time()
data_time_all = 0
for step, batch in enumerate(train_dataloader):
image = batch['images']
ref_image = batch['ref_images']
data_time_all += time.time() - data_time_start
with torch.no_grad():
latents = vae.encode(image.to(weight_dtype).to(accelerator.device)).latent_dist.sample()
latents = latents.to(dtype=(weight_dtype))
latents = (latents - vae.config.shift_factor) * vae.config.scaling_factor
ref_latents = vae.encode(ref_image.to(weight_dtype).to(accelerator.device)).latent_dist.sample()
ref_latents = ref_latents.to(dtype=(weight_dtype))
ref_latents = (ref_latents - vae.config.shift_factor) * vae.config.scaling_factor
text_input_ids = batch['input_ids'].to(accelerator.device)
text_attention_mask = batch['attention_mask'].to(accelerator.device)
pixel_values = batch['pixel_values'].to(accelerator.device)
image_grid_thw = batch['image_grid_thw'].to(accelerator.device)
with torch.no_grad():
text_output = text_encoder(
input_ids=text_input_ids,
attention_mask=text_attention_mask,
pixel_values=pixel_values,
image_grid_thw=image_grid_thw,
output_hidden_states=True
)
prompt_embeds = text_output.hidden_states[-1].clone().detach()
prompt_embeds = prompt_embeds.to(weight_dtype)
prompt_embeds = prompt_embeds[:,args.prompt_template_encode_start_idx: -args.prompt_template_encode_end_idx ,:]
# Sample a random timestep for each image
grad_norm = None
with accelerator.accumulate(transformer):
# Predict the noise residual
optimizer.zero_grad()
# logit-normal
sigmas = torch.sigmoid(torch.randn((latents.shape[0],), device=accelerator.device, dtype=latents.dtype))
if args.use_dynamic_shifting:
sigmas = noise_scheduler.time_shift(mu, 1.0, sigmas)
timesteps = sigmas * 1000.0
sigmas = sigmas.view(-1, 1, 1, 1)
noise = torch.randn_like(latents)
noisy_latents = (1 - sigmas) * latents + sigmas * noise
noisy_latents = noisy_latents.to(weight_dtype)
packed_noisy_latents = pack_latents(
noisy_latents,
batch_size=latents.shape[0],
num_channels_latents=latents.shape[1],
height=latents.shape[2],
width=latents.shape[3],
)
packed_ref_latents = pack_latents(
ref_latents,
batch_size=ref_latents.shape[0],
num_channels_latents=ref_latents.shape[1],
height=ref_latents.shape[2],
width=ref_latents.shape[3],
)
guidance = None
img_ids = prepare_pos_ids(modality_id=1,
type='image',
start=(prompt_embeds.shape[1], prompt_embeds.shape[1]),
height=latents.shape[2]//2,
width=latents.shape[3]//2).to(accelerator.device, dtype=torch.float64)
img_ids_ref = prepare_pos_ids(modality_id=2,
type='image',
start=(prompt_embeds.shape[1], prompt_embeds.shape[1]),
height=ref_latents.shape[2]//2,
width=ref_latents.shape[3]//2).to(accelerator.device, dtype=torch.float64)
timesteps = (
torch.tensor(timesteps)
.expand(noisy_latents.shape[0])
.to(device=accelerator.device)
/ 1000
)
text_ids = prepare_pos_ids(modality_id=0,
type='text',
start=(0, 0),
num_token=prompt_embeds.shape[1]).to(accelerator.device, torch.float64)
img_ids = torch.cat([img_ids, img_ids_ref], dim=0)
latent_model_input = torch.cat([packed_noisy_latents, packed_ref_latents], dim=1)
with torch.nn.attention.sdpa_kernel(torch.nn.attention.SDPBackend.FLASH_ATTENTION):
model_pred = transformer(latent_model_input, prompt_embeds, timesteps,
img_ids, text_ids, guidance, return_dict=False)[0]
model_pred = model_pred[:, :packed_noisy_latents.size(1)]
model_pred = unpack_latents(
model_pred,
height=latents.shape[2] * 8,
width=latents.shape[3] * 8,
vae_scale_factor=16,
)
target = noise - latents
loss = torch.mean(
((model_pred.float() - target.float()) ** 2).reshape(
target.shape[0], -1
),
1,
).mean()
accelerator.backward(loss)
if accelerator.sync_gradients:
grad_norm = transformer.get_global_grad_norm()
optimizer.step()
if not accelerator.optimizer_step_was_skipped:
lr_scheduler.step()
if accelerator.sync_gradients and args.use_ema:
model_ema.step(transformer.parameters())
lr = lr_scheduler.get_last_lr()[0]
if accelerator.sync_gradients:
bsz, ic, ih, iw = image.shape
logs = {"loss": accelerator.gather(loss).mean().item(), 'aspect_ratio': (ih*1.0 / iw)}
if grad_norm is not None:
logs.update(grad_norm=accelerator.gather(grad_norm).mean().item())
log_buffer.update(logs)
if (step + 1) % args.log_interval == 0 or (step + 1) == 1:
t = (time.time() - last_tic) / args.log_interval
t_d = data_time_all / args.log_interval
log_buffer.average()
info = f"Step={step+1}, Epoch={epoch}, global_step={global_step}, time_all:{t:.3f}, time_data:{t_d:.3f}, lr:{lr:.3e}, s:(ch:{latents.shape[1]},h:{latents.shape[2]},w:{latents.shape[3]}), "
info += ', '.join([f"{k}:{v:.4f}" for k,v in log_buffer.output.items()])
logger.info(info)
last_tic = time.time()
log_buffer.clear()
data_time_all = 0
logs.update(lr=lr)
accelerator.log(logs, step=global_step)
global_step += 1
data_time_start = time.time()
if global_step != 0 and global_step % args.save_model_steps == 0:
save_path = os.path.join(args.work_dir, f'checkpoints-{global_step}')
if args.use_ema:
model_ema.store(transformer.parameters())
model_ema.copy_to(transformer.parameters())
accelerator.save_state(save_path)
if args.use_ema:
model_ema.restore(transformer.parameters())
logger.info(f"Saved state to {save_path} (global_step: {global_step})")
accelerator.wait_for_everyone()
if global_step >= args.max_train_steps:
break
def parse_args():
parser = argparse.ArgumentParser(description="Process some integers.")
parser.add_argument("--config", type=str, default='', help="config")
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
)
args = parser.parse_args()
return args
if __name__ == '__main__':
cur_dir = os.path.dirname(os.path.abspath(__file__))
args = parse_args()
if args.config != '' and os.path.exists(args.config):
config = yaml.safe_load(open(args.config, 'r'))
else:
config = yaml.safe_load(open(f'{cur_dir}/train_config.yaml', 'r'))
args_dict = vars(args)
args_dict.update(config)
args = argparse.Namespace(**args_dict)
os.umask(0o000)
os.makedirs(args.work_dir, exist_ok=True)
log_dir = args.work_dir + f'/logs'
os.makedirs(log_dir, exist_ok=True)
accelerator_project_config = ProjectConfiguration(project_dir=args.work_dir, logging_dir=log_dir)
with open(f'{log_dir}/train.yaml', 'w') as f:
yaml.dump(args_dict, f)
accelerator = Accelerator(
mixed_precision=args.mixed_precision,
gradient_accumulation_steps=args.gradient_accumulation_steps,
log_with=args.report_to,
project_config= accelerator_project_config,
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
if args.seed is not None:
set_seed(args.seed)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
logger.info(f'using weight_dtype {weight_dtype}!!!')
if args.diffusion_pretrain_weight:
transformer = LongCatImageTransformer2DModel.from_pretrained(args.diffusion_pretrain_weight, ignore_mismatched_sizes=False)
logger.info(f'successful load model weight {args.diffusion_pretrain_weight}!!!')
else:
transformer = LongCatImageTransformer2DModel.from_pretrained(os.path.join(args.pretrained_model_name_or_path, "transformer"), ignore_mismatched_sizes=False)
logger.info(f'successful load model weight {args.pretrained_model_name_or_path+"/transformer"}!!!')
transformer = transformer.train()
total_trainable_params = sum(p.numel() for p in transformer.parameters() if p.requires_grad)
logger.info(f">>>>>> total_trainable_params: {total_trainable_params}")
if args.use_ema:
model_ema = EMAModel(transformer.parameters(), decay=args.ema_rate)
else:
model_ema = None
vae_dtype = torch.float32
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path, subfolder="vae", torch_dtype=weight_dtype).cuda().eval()
text_encoder = AutoModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder" , torch_dtype=weight_dtype, trust_remote_code=True).cuda().eval()
tokenizer = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path, subfolder="tokenizer" , torch_dtype=weight_dtype, trust_remote_code=True)
text_processor = AutoProcessor.from_pretrained(
args.pretrained_model_name_or_path, subfolder="tokenizer" , torch_dtype=weight_dtype, trust_remote_code=True)
logger.info("all models loaded successfully")
# build models
noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
args.pretrained_model_name_or_path, subfolder="scheduler")
latent_size = int(args.resolution) // 8
mu = calculate_shift(
(latent_size//2)**2,
noise_scheduler.config.base_image_seq_len,
noise_scheduler.config.max_image_seq_len,
noise_scheduler.config.base_shift,
noise_scheduler.config.max_shift,
)
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
for i, model in enumerate(models):
model.save_pretrained(os.path.join(output_dir, "transformer"))
if len(weights) != 0:
weights.pop()
def load_model_hook(models, input_dir):
while len(models) > 0:
# pop models so that they are not loaded again
model = models.pop()
# load diffusers style into model
load_model = LongCatImageTransformer2DModel.from_pretrained(
input_dir, subfolder="transformer")
model.register_to_config(**load_model.config)
model.load_state_dict(load_model.state_dict())
del load_model
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
if args.gradient_checkpointing:
transformer.enable_gradient_checkpointing()
# Enable TF32 for faster training on Ampere GPUs,
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
)
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
params_to_optimize = transformer.parameters()
optimizer = optimizer_class(
params_to_optimize,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
transformer.to(accelerator.device, dtype=weight_dtype)
if args.use_ema:
model_ema.to(accelerator.device, dtype=weight_dtype)
train_dataloader = build_dataloader(args, args.data_txt_root, tokenizer, text_processor,args.resolution,)
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * accelerator.num_processes,
num_cycles=args.lr_num_cycles,
power=args.lr_power,
)
global_step = 0
first_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint != "latest":
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = os.listdir(args.work_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
if path is None:
logger.info(f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run.")
args.resume_from_checkpoint = None
initial_global_step = 0
else:
logger.info(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(args.work_dir, path))
global_step = int(path.split("-")[1])
initial_global_step = global_step
first_epoch = global_step // num_update_steps_per_epoch
timestamp = time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime())
if accelerator.is_main_process:
tracker_config = dict(vars(args))
try:
accelerator.init_trackers('sft', tracker_config)
except Exception as e:
logger.warning(f'get error in save config, {e}')
accelerator.init_trackers(f"sft_{timestamp}")
transformer, optimizer, _, _ = accelerator.prepare(
transformer, optimizer, train_dataloader, lr_scheduler)
log_buffer = LogBuffer()
train(global_step=global_step)