Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,9 @@
|
|
| 1 |
-
import
|
| 2 |
-
import stat
|
| 3 |
-
import uuid
|
| 4 |
-
import subprocess
|
| 5 |
import tempfile
|
| 6 |
-
from zipfile import ZipFile
|
| 7 |
import gradio as gr
|
| 8 |
-
import
|
|
|
|
|
|
|
| 9 |
from googletrans import Translator
|
| 10 |
from TTS.api import TTS
|
| 11 |
from faster_whisper import WhisperModel
|
|
@@ -13,66 +11,61 @@ import soundfile as sf
|
|
| 13 |
import numpy as np
|
| 14 |
import cv2
|
| 15 |
from huggingface_hub import HfApi
|
|
|
|
| 16 |
|
| 17 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 18 |
os.environ["COQUI_TOS_AGREED"] = "1"
|
| 19 |
api = HfApi(token=HF_TOKEN)
|
| 20 |
repo_id = "artificialguybr/video-dubbing"
|
| 21 |
|
| 22 |
-
#
|
| 23 |
-
ZipFile("ffmpeg.zip").extractall()
|
| 24 |
-
st = os.stat('ffmpeg')
|
| 25 |
-
os.chmod('ffmpeg', st.st_mode | stat.S_IEXEC)
|
| 26 |
-
|
| 27 |
-
# Whisper model initialization
|
| 28 |
model_size = "small"
|
| 29 |
model = WhisperModel(model_size, device="cpu", compute_type="int8")
|
| 30 |
|
| 31 |
def check_for_faces(video_path):
|
| 32 |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
| 33 |
cap = cv2.VideoCapture(video_path)
|
| 34 |
-
|
| 35 |
while True:
|
| 36 |
ret, frame = cap.read()
|
| 37 |
if not ret:
|
| 38 |
break
|
| 39 |
-
|
| 40 |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
| 41 |
faces = face_cascade.detectMultiScale(gray, 1.1, 4)
|
| 42 |
-
|
| 43 |
if len(faces) > 0:
|
| 44 |
return True
|
| 45 |
-
|
| 46 |
return False
|
| 47 |
|
| 48 |
@spaces.GPU
|
| 49 |
def process_video(radio, video, target_language, has_closeup_face):
|
| 50 |
if target_language is None:
|
| 51 |
return gr.Error("Please select a Target Language for Dubbing.")
|
| 52 |
-
|
| 53 |
run_uuid = uuid.uuid4().hex[:6]
|
| 54 |
output_filename = f"{run_uuid}_resized_video.mp4"
|
| 55 |
|
| 56 |
-
# Use
|
| 57 |
-
subprocess.run([
|
| 58 |
-
|
| 59 |
video_path = output_filename
|
|
|
|
| 60 |
if not os.path.exists(video_path):
|
| 61 |
return f"Error: {video_path} does not exist."
|
| 62 |
-
|
| 63 |
# Check video duration
|
| 64 |
-
video_info = subprocess.
|
| 65 |
-
video_duration = float(video_info
|
| 66 |
-
|
| 67 |
if video_duration > 60:
|
| 68 |
os.remove(video_path)
|
| 69 |
return gr.Error("Video duration exceeds 1 minute. Please upload a shorter video.")
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
# Audio processing
|
| 75 |
-
subprocess.run(['ffmpeg', '-y', '-i', f"{run_uuid}_output_audio.wav", '-af', 'lowpass=3000,highpass=100', f"{run_uuid}_output_audio_final.wav"])
|
| 76 |
|
| 77 |
print("Attempting to transcribe with Whisper...")
|
| 78 |
try:
|
|
@@ -83,35 +76,34 @@ def process_video(radio, video, target_language, has_closeup_face):
|
|
| 83 |
except RuntimeError as e:
|
| 84 |
print(f"RuntimeError encountered: {str(e)}")
|
| 85 |
if "CUDA failed with error device-side assert triggered" in str(e):
|
| 86 |
-
gr.Warning("Error. Space
|
| 87 |
api.restart_space(repo_id=repo_id)
|
| 88 |
-
|
| 89 |
language_mapping = {'English': 'en', 'Spanish': 'es', 'French': 'fr', 'German': 'de', 'Italian': 'it', 'Portuguese': 'pt', 'Polish': 'pl', 'Turkish': 'tr', 'Russian': 'ru', 'Dutch': 'nl', 'Czech': 'cs', 'Arabic': 'ar', 'Chinese (Simplified)': 'zh-cn'}
|
| 90 |
target_language_code = language_mapping[target_language]
|
| 91 |
translator = Translator()
|
| 92 |
translated_text = translator.translate(whisper_text, src=whisper_language, dest=target_language_code).text
|
| 93 |
print(translated_text)
|
| 94 |
-
|
| 95 |
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2")
|
| 96 |
tts.tts_to_file(translated_text, speaker_wav=f"{run_uuid}_output_audio_final.wav", file_path=f"{run_uuid}_output_synth.wav", language=target_language_code)
|
| 97 |
|
| 98 |
-
has_face = check_for_faces(video_path) if not has_closeup_face else True
|
| 99 |
-
|
| 100 |
if has_closeup_face:
|
| 101 |
try:
|
| 102 |
-
|
|
|
|
| 103 |
except subprocess.CalledProcessError as e:
|
| 104 |
if "Face not detected! Ensure the video contains a face in all the frames." in str(e.stderr):
|
| 105 |
gr.Warning("Wav2lip didn't detect a face. Please try again with the option disabled.")
|
| 106 |
-
subprocess.run([
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
if not os.path.exists(f"{run_uuid}_output_video.mp4"):
|
| 111 |
raise FileNotFoundError(f"Error: {run_uuid}_output_video.mp4 was not generated.")
|
| 112 |
-
|
| 113 |
output_video_path = f"{run_uuid}_output_video.mp4"
|
| 114 |
-
|
| 115 |
# Cleanup
|
| 116 |
files_to_delete = [
|
| 117 |
f"{run_uuid}_resized_video.mp4",
|
|
@@ -124,15 +116,15 @@ def process_video(radio, video, target_language, has_closeup_face):
|
|
| 124 |
os.remove(file)
|
| 125 |
except FileNotFoundError:
|
| 126 |
print(f"File {file} not found for deletion.")
|
| 127 |
-
|
| 128 |
return output_video_path
|
| 129 |
|
| 130 |
def swap(radio):
|
| 131 |
-
if
|
| 132 |
return gr.update(source="upload")
|
| 133 |
else:
|
| 134 |
return gr.update(source="webcam")
|
| 135 |
-
|
| 136 |
video = gr.Video()
|
| 137 |
radio = gr.Radio(["Upload", "Record"], value="Upload", show_label=False)
|
| 138 |
iface = gr.Interface(
|
|
@@ -142,9 +134,9 @@ iface = gr.Interface(
|
|
| 142 |
video,
|
| 143 |
gr.Dropdown(choices=["English", "Spanish", "French", "German", "Italian", "Portuguese", "Polish", "Turkish", "Russian", "Dutch", "Czech", "Arabic", "Chinese (Simplified)"], label="Target Language for Dubbing", value="Spanish"),
|
| 144 |
gr.Checkbox(
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
],
|
| 149 |
outputs=gr.Video(),
|
| 150 |
live=False,
|
|
@@ -158,14 +150,14 @@ with gr.Blocks() as demo:
|
|
| 158 |
radio.change(swap, inputs=[radio], outputs=video)
|
| 159 |
gr.Markdown("""
|
| 160 |
**Note:**
|
| 161 |
-
- Video limit is 1 minute. It will
|
| 162 |
- Generation may take up to 5 minutes.
|
| 163 |
- By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml
|
| 164 |
-
- The tool uses open-source models for all models. It's
|
| 165 |
- Quality can be improved but would require more processing time per video. For scalability and hardware limitations, speed was chosen, not just quality.
|
| 166 |
- If you need more than 1 minute, duplicate the Space and change the limit on app.py.
|
| 167 |
- If you incorrectly mark the 'Video has a close-up face' checkbox, the dubbing may not work as expected.
|
| 168 |
""")
|
| 169 |
|
| 170 |
-
demo.queue()
|
| 171 |
-
demo.launch()
|
|
|
|
| 1 |
+
import spaces
|
|
|
|
|
|
|
|
|
|
| 2 |
import tempfile
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
+
import subprocess
|
| 5 |
+
import os, stat
|
| 6 |
+
import uuid
|
| 7 |
from googletrans import Translator
|
| 8 |
from TTS.api import TTS
|
| 9 |
from faster_whisper import WhisperModel
|
|
|
|
| 11 |
import numpy as np
|
| 12 |
import cv2
|
| 13 |
from huggingface_hub import HfApi
|
| 14 |
+
import shlex
|
| 15 |
|
| 16 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 17 |
os.environ["COQUI_TOS_AGREED"] = "1"
|
| 18 |
api = HfApi(token=HF_TOKEN)
|
| 19 |
repo_id = "artificialguybr/video-dubbing"
|
| 20 |
|
| 21 |
+
# Whisper
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
model_size = "small"
|
| 23 |
model = WhisperModel(model_size, device="cpu", compute_type="int8")
|
| 24 |
|
| 25 |
def check_for_faces(video_path):
|
| 26 |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
| 27 |
cap = cv2.VideoCapture(video_path)
|
| 28 |
+
|
| 29 |
while True:
|
| 30 |
ret, frame = cap.read()
|
| 31 |
if not ret:
|
| 32 |
break
|
| 33 |
+
|
| 34 |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
| 35 |
faces = face_cascade.detectMultiScale(gray, 1.1, 4)
|
| 36 |
+
|
| 37 |
if len(faces) > 0:
|
| 38 |
return True
|
| 39 |
+
|
| 40 |
return False
|
| 41 |
|
| 42 |
@spaces.GPU
|
| 43 |
def process_video(radio, video, target_language, has_closeup_face):
|
| 44 |
if target_language is None:
|
| 45 |
return gr.Error("Please select a Target Language for Dubbing.")
|
| 46 |
+
|
| 47 |
run_uuid = uuid.uuid4().hex[:6]
|
| 48 |
output_filename = f"{run_uuid}_resized_video.mp4"
|
| 49 |
|
| 50 |
+
# Use subprocess for ffmpeg operations
|
| 51 |
+
subprocess.run(["ffmpeg", "-i", video, "-vf", "scale=-2:720", output_filename])
|
| 52 |
+
|
| 53 |
video_path = output_filename
|
| 54 |
+
|
| 55 |
if not os.path.exists(video_path):
|
| 56 |
return f"Error: {video_path} does not exist."
|
| 57 |
+
|
| 58 |
# Check video duration
|
| 59 |
+
video_info = subprocess.check_output(["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", video_path])
|
| 60 |
+
video_duration = float(video_info)
|
| 61 |
+
|
| 62 |
if video_duration > 60:
|
| 63 |
os.remove(video_path)
|
| 64 |
return gr.Error("Video duration exceeds 1 minute. Please upload a shorter video.")
|
| 65 |
+
|
| 66 |
+
subprocess.run(["ffmpeg", "-i", video_path, "-acodec", "pcm_s24le", "-ar", "48000", "-map", "a", f"{run_uuid}_output_audio.wav"])
|
| 67 |
+
|
| 68 |
+
subprocess.run(["ffmpeg", "-y", "-i", f"{run_uuid}_output_audio.wav", "-af", "lowpass=3000,highpass=100", f"{run_uuid}_output_audio_final.wav"])
|
|
|
|
|
|
|
| 69 |
|
| 70 |
print("Attempting to transcribe with Whisper...")
|
| 71 |
try:
|
|
|
|
| 76 |
except RuntimeError as e:
|
| 77 |
print(f"RuntimeError encountered: {str(e)}")
|
| 78 |
if "CUDA failed with error device-side assert triggered" in str(e):
|
| 79 |
+
gr.Warning("Error. Space need to restart. Please retry in a minute")
|
| 80 |
api.restart_space(repo_id=repo_id)
|
| 81 |
+
|
| 82 |
language_mapping = {'English': 'en', 'Spanish': 'es', 'French': 'fr', 'German': 'de', 'Italian': 'it', 'Portuguese': 'pt', 'Polish': 'pl', 'Turkish': 'tr', 'Russian': 'ru', 'Dutch': 'nl', 'Czech': 'cs', 'Arabic': 'ar', 'Chinese (Simplified)': 'zh-cn'}
|
| 83 |
target_language_code = language_mapping[target_language]
|
| 84 |
translator = Translator()
|
| 85 |
translated_text = translator.translate(whisper_text, src=whisper_language, dest=target_language_code).text
|
| 86 |
print(translated_text)
|
| 87 |
+
|
| 88 |
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2")
|
| 89 |
tts.tts_to_file(translated_text, speaker_wav=f"{run_uuid}_output_audio_final.wav", file_path=f"{run_uuid}_output_synth.wav", language=target_language_code)
|
| 90 |
|
|
|
|
|
|
|
| 91 |
if has_closeup_face:
|
| 92 |
try:
|
| 93 |
+
cmd = f"python Wav2Lip/inference.py --checkpoint_path 'Wav2Lip/checkpoints/wav2lip_gan.pth' --face {shlex.quote(video_path)} --audio '{run_uuid}_output_synth.wav' --pads 0 15 0 0 --resize_factor 1 --nosmooth --outfile '{run_uuid}_output_video.mp4'"
|
| 94 |
+
subprocess.run(cmd, shell=True, check=True)
|
| 95 |
except subprocess.CalledProcessError as e:
|
| 96 |
if "Face not detected! Ensure the video contains a face in all the frames." in str(e.stderr):
|
| 97 |
gr.Warning("Wav2lip didn't detect a face. Please try again with the option disabled.")
|
| 98 |
+
subprocess.run(["ffmpeg", "-i", video_path, "-i", f"{run_uuid}_output_synth.wav", "-c:v", "copy", "-c:a", "aac", "-strict", "experimental", "-map", "0:v:0", "-map", "1:a:0", f"{run_uuid}_output_video.mp4"])
|
| 99 |
+
else:
|
| 100 |
+
subprocess.run(["ffmpeg", "-i", video_path, "-i", f"{run_uuid}_output_synth.wav", "-c:v", "copy", "-c:a", "aac", "-strict", "experimental", "-map", "0:v:0", "-map", "1:a:0", f"{run_uuid}_output_video.mp4"])
|
| 101 |
+
|
| 102 |
if not os.path.exists(f"{run_uuid}_output_video.mp4"):
|
| 103 |
raise FileNotFoundError(f"Error: {run_uuid}_output_video.mp4 was not generated.")
|
| 104 |
+
|
| 105 |
output_video_path = f"{run_uuid}_output_video.mp4"
|
| 106 |
+
|
| 107 |
# Cleanup
|
| 108 |
files_to_delete = [
|
| 109 |
f"{run_uuid}_resized_video.mp4",
|
|
|
|
| 116 |
os.remove(file)
|
| 117 |
except FileNotFoundError:
|
| 118 |
print(f"File {file} not found for deletion.")
|
| 119 |
+
|
| 120 |
return output_video_path
|
| 121 |
|
| 122 |
def swap(radio):
|
| 123 |
+
if(radio == "Upload"):
|
| 124 |
return gr.update(source="upload")
|
| 125 |
else:
|
| 126 |
return gr.update(source="webcam")
|
| 127 |
+
|
| 128 |
video = gr.Video()
|
| 129 |
radio = gr.Radio(["Upload", "Record"], value="Upload", show_label=False)
|
| 130 |
iface = gr.Interface(
|
|
|
|
| 134 |
video,
|
| 135 |
gr.Dropdown(choices=["English", "Spanish", "French", "German", "Italian", "Portuguese", "Polish", "Turkish", "Russian", "Dutch", "Czech", "Arabic", "Chinese (Simplified)"], label="Target Language for Dubbing", value="Spanish"),
|
| 136 |
gr.Checkbox(
|
| 137 |
+
label="Video has a close-up face. Use Wav2lip.",
|
| 138 |
+
value=False,
|
| 139 |
+
info="Say if video have close-up face. For Wav2lip. Will not work if checked wrongly.")
|
| 140 |
],
|
| 141 |
outputs=gr.Video(),
|
| 142 |
live=False,
|
|
|
|
| 150 |
radio.change(swap, inputs=[radio], outputs=video)
|
| 151 |
gr.Markdown("""
|
| 152 |
**Note:**
|
| 153 |
+
- Video limit is 1 minute. It will dubbing all people using just one voice.
|
| 154 |
- Generation may take up to 5 minutes.
|
| 155 |
- By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml
|
| 156 |
+
- The tool uses open-source models for all models. It's an alpha version.
|
| 157 |
- Quality can be improved but would require more processing time per video. For scalability and hardware limitations, speed was chosen, not just quality.
|
| 158 |
- If you need more than 1 minute, duplicate the Space and change the limit on app.py.
|
| 159 |
- If you incorrectly mark the 'Video has a close-up face' checkbox, the dubbing may not work as expected.
|
| 160 |
""")
|
| 161 |
|
| 162 |
+
demo.queue(concurrency_count=1, max_size=15)
|
| 163 |
+
demo.launch()
|