Spaces:
Runtime error
Runtime error
Commit
·
fde41fa
1
Parent(s):
7139589
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,177 +1,19 @@
|
|
| 1 |
-
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
dataset = load_dataset(dataset_name, split="train")
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
# Defining the name of the Falcon model
|
| 16 |
-
model_name = "ybelkada/falcon-7b-sharded-bf16"
|
| 17 |
-
|
| 18 |
-
# Configuring the BitsAndBytes quantization
|
| 19 |
-
bnb_config = BitsAndBytesConfig(
|
| 20 |
-
load_in_4bit=True,
|
| 21 |
-
bnb_4bit_quant_type="nf4",
|
| 22 |
-
bnb_4bit_compute_dtype=torch.float16,
|
| 23 |
-
)
|
| 24 |
-
|
| 25 |
-
# Loading the Falcon model with quantization configuration
|
| 26 |
-
model = FalconForCausalLM.from_pretrained(
|
| 27 |
-
model_name,
|
| 28 |
-
quantization_config=bnb_config,
|
| 29 |
-
trust_remote_code=True
|
| 30 |
-
)
|
| 31 |
-
|
| 32 |
-
# Disabling cache usage in the model configuration
|
| 33 |
-
model.config.use_cache = False
|
| 34 |
-
|
| 35 |
-
# Load the tokenizer for the Falcon 7B model with remote code trust
|
| 36 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 37 |
-
|
| 38 |
-
# Set the padding token to be the same as the end-of-sequence token
|
| 39 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 40 |
-
|
| 41 |
-
# Import the necessary module for LoRA configuration
|
| 42 |
-
from peft import LoraConfig
|
| 43 |
-
|
| 44 |
-
# Define the parameters for LoRA configuration
|
| 45 |
-
lora_alpha = 16
|
| 46 |
-
lora_dropout = 0.1
|
| 47 |
-
lora_r = 64
|
| 48 |
-
|
| 49 |
-
# Create the LoRA configuration object
|
| 50 |
-
peft_config = LoraConfig(
|
| 51 |
-
lora_alpha=lora_alpha,
|
| 52 |
-
lora_dropout=lora_dropout,
|
| 53 |
-
r=lora_r,
|
| 54 |
-
bias="none",
|
| 55 |
-
task_type="CAUSAL_LM",
|
| 56 |
-
target_modules=[
|
| 57 |
-
"query_key_value",
|
| 58 |
-
"dense",
|
| 59 |
-
"dense_h_to_4h",
|
| 60 |
-
"dense_4h_to_h",
|
| 61 |
-
]
|
| 62 |
-
)
|
| 63 |
-
|
| 64 |
-
from transformers import TrainingArguments
|
| 65 |
-
# Define the directory to save training results
|
| 66 |
-
output_dir = "./results"
|
| 67 |
-
|
| 68 |
-
# Set the batch size per device during training
|
| 69 |
-
per_device_train_batch_size = 4
|
| 70 |
-
|
| 71 |
-
# Number of steps to accumulate gradients before updating the model
|
| 72 |
-
gradient_accumulation_steps = 4
|
| 73 |
-
|
| 74 |
-
# Choose the optimizer type (e.g., "paged_adamw_32bit")
|
| 75 |
-
optim = "paged_adamw_32bit"
|
| 76 |
-
|
| 77 |
-
# Interval to save model checkpoints (every 10 steps)
|
| 78 |
-
save_steps = 10
|
| 79 |
-
|
| 80 |
-
# Interval to log training metrics (every 10 steps)
|
| 81 |
-
logging_steps = 10
|
| 82 |
-
|
| 83 |
-
# Learning rate for optimization
|
| 84 |
-
learning_rate = 2e-4
|
| 85 |
-
|
| 86 |
-
# Maximum gradient norm for gradient clipping
|
| 87 |
-
max_grad_norm = 0.3
|
| 88 |
-
|
| 89 |
-
# Maximum number of training steps
|
| 90 |
-
max_steps = 50
|
| 91 |
-
|
| 92 |
-
# Warmup ratio for learning rate scheduling
|
| 93 |
-
warmup_ratio = 0.03
|
| 94 |
-
|
| 95 |
-
# Type of learning rate scheduler (e.g., "constant")
|
| 96 |
-
lr_scheduler_type = "constant"
|
| 97 |
-
|
| 98 |
-
# Create a TrainingArguments object to configure the training process
|
| 99 |
-
training_arguments = TrainingArguments(
|
| 100 |
-
output_dir=output_dir,
|
| 101 |
-
per_device_train_batch_size=per_device_train_batch_size,
|
| 102 |
-
gradient_accumulation_steps=gradient_accumulation_steps,
|
| 103 |
-
optim=optim,
|
| 104 |
-
save_steps=save_steps,
|
| 105 |
-
logging_steps=logging_steps,
|
| 106 |
-
learning_rate=learning_rate,
|
| 107 |
-
fp16=True, # Use mixed precision training (16-bit)
|
| 108 |
-
max_grad_norm=max_grad_norm,
|
| 109 |
-
max_steps=max_steps,
|
| 110 |
-
warmup_ratio=warmup_ratio,
|
| 111 |
-
group_by_length=True,
|
| 112 |
-
lr_scheduler_type=lr_scheduler_type,
|
| 113 |
-
)
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
dataset = dataset.map(lambda x: {"text": x["input"]+x["output"]})
|
| 117 |
-
|
| 118 |
-
# Import the SFTTrainer from the TRL library
|
| 119 |
-
from trl import SFTTrainer
|
| 120 |
-
|
| 121 |
-
# Set the maximum sequence length
|
| 122 |
-
max_seq_length = 512
|
| 123 |
-
|
| 124 |
-
# Create a trainer instance using SFTTrainer
|
| 125 |
-
trainer = SFTTrainer(
|
| 126 |
-
model=model,
|
| 127 |
-
train_dataset=dataset,
|
| 128 |
-
peft_config=peft_config,
|
| 129 |
-
dataset_text_field="text",
|
| 130 |
-
max_seq_length=max_seq_length,
|
| 131 |
-
tokenizer=tokenizer,
|
| 132 |
-
args=training_arguments,
|
| 133 |
)
|
| 134 |
|
|
|
|
| 135 |
|
| 136 |
-
# Iterate through the named modules of the trainer's model
|
| 137 |
-
for name, module in trainer.model.named_modules():
|
| 138 |
-
|
| 139 |
-
# Check if the name contains "norm"
|
| 140 |
-
if "norm" in name:
|
| 141 |
-
# Convert the module to use torch.float32 data type
|
| 142 |
-
module = module.to(torch.float32)
|
| 143 |
-
|
| 144 |
-
trainer.train()
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
prompt = "Generate a python script to add prime numbers between one and ten"
|
| 148 |
-
|
| 149 |
-
inputs = tokenizer.encode(prompt, return_tensors='pt')
|
| 150 |
-
|
| 151 |
-
outputs = model.generate(inputs, max_length=100, temperature = .7, do_sample=True)
|
| 152 |
-
|
| 153 |
-
completion = tokenizer.decode(outputs[0])
|
| 154 |
-
|
| 155 |
-
print(completion)
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 161 |
-
|
| 162 |
-
checkpoint_name= model
|
| 163 |
-
model = AutoModelForCausalLM.from_pretrained(checkpoint_name)
|
| 164 |
-
tokenizer = AutoTokenizer.from_pretrained(checkpoint_name)
|
| 165 |
-
|
| 166 |
-
prompt = "Create a gradio application that help to convert temperature in celcius into temperature in Fahrenheit"
|
| 167 |
-
inputs = tokenizer(f"Question: {prompt}\n\nAnswer: ", return_tensors="pt")
|
| 168 |
-
|
| 169 |
-
outputs = model.generate(
|
| 170 |
-
inputs["input_ids"],
|
| 171 |
-
temperature=0.2,
|
| 172 |
-
top_p=0.95,
|
| 173 |
-
max_new_tokens=200
|
| 174 |
-
)
|
| 175 |
-
|
| 176 |
-
input_len=len(inputs["input_ids"])
|
| 177 |
-
print(tokenizer.decode(outputs[0][input_len:]))
|
|
|
|
| 1 |
+
fine_tuned_model = "ashioyajotham/results"
|
| 2 |
|
| 3 |
+
def generate_code(input_text):
|
| 4 |
+
# Use your fine-tuned model to generate code here
|
| 5 |
+
generated_code = fine_tuned_model.generate(input_text)
|
| 6 |
+
return generated_code
|
| 7 |
|
| 8 |
+
import gradio as gr
|
|
|
|
| 9 |
|
| 10 |
+
iface = gr.Interface(
|
| 11 |
+
fn=generate_code,
|
| 12 |
+
inputs="text",
|
| 13 |
+
outputs="text",
|
| 14 |
+
title="Code Generation App",
|
| 15 |
+
description="Generate code from text input."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
)
|
| 17 |
|
| 18 |
+
iface.launch()
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|