Update app.py
Browse files
app.py
CHANGED
|
@@ -6,13 +6,15 @@ from huggingface_hub import InferenceClient
|
|
| 6 |
import re
|
| 7 |
from datetime import datetime
|
| 8 |
import json
|
| 9 |
-
|
| 10 |
import arxiv
|
| 11 |
from utils import get_md_text_abstract, search_cleaner, get_arxiv_live_search
|
| 12 |
|
| 13 |
retrieve_results = 10
|
| 14 |
show_examples = False
|
| 15 |
-
llm_models_to_choose = ['mistralai/Mixtral-8x7B-Instruct-v0.1','mistralai/Mistral-7B-Instruct-v0.
|
|
|
|
|
|
|
| 16 |
|
| 17 |
generate_kwargs = dict(
|
| 18 |
temperature = None,
|
|
@@ -33,8 +35,8 @@ except:
|
|
| 33 |
gr.Warning("Retriever not working!")
|
| 34 |
|
| 35 |
## Header
|
| 36 |
-
mark_text = '#
|
| 37 |
-
header_text = "
|
| 38 |
|
| 39 |
try:
|
| 40 |
with open("README.md", "r") as f:
|
|
@@ -53,7 +55,7 @@ database_choices = [index_info,'Arxiv Search - Latest - (EXPERIMENTAL)']
|
|
| 53 |
## Arxiv API
|
| 54 |
arx_client = arxiv.Client()
|
| 55 |
is_arxiv_available = True
|
| 56 |
-
check_arxiv_result = get_arxiv_live_search("What is
|
| 57 |
if len(check_arxiv_result) == 0:
|
| 58 |
is_arxiv_available = False
|
| 59 |
print("Arxiv search not working, switching to default search ...")
|
|
@@ -80,7 +82,7 @@ def rag_cleaner(inp):
|
|
| 80 |
date = inp['document_metadata']['_time']
|
| 81 |
return f"{rank}. <b> {title} </b> \n Date : {date} \n Abstract: {content}"
|
| 82 |
|
| 83 |
-
def get_prompt_text(question, context, formatted = True, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.
|
| 84 |
if formatted:
|
| 85 |
sys_instruction = f"Context:\n {context} \n Given the following scientific paper abstracts, take a deep breath and lets think step by step to answer the question. Cite the titles of your sources when answering, do not cite links or dates."
|
| 86 |
message = f"Question: {question}"
|
|
@@ -100,35 +102,6 @@ def get_references(question, retriever, k = retrieve_results):
|
|
| 100 |
def get_rag(message):
|
| 101 |
return get_references(message, RAG)
|
| 102 |
|
| 103 |
-
def SaveResponseAndRead(result):
|
| 104 |
-
documentHTML5='''
|
| 105 |
-
<!DOCTYPE html>
|
| 106 |
-
<html>
|
| 107 |
-
<head>
|
| 108 |
-
<title>Read It Aloud</title>
|
| 109 |
-
<script type="text/javascript">
|
| 110 |
-
function readAloud() {
|
| 111 |
-
const text = document.getElementById("textArea").value;
|
| 112 |
-
const speech = new SpeechSynthesisUtterance(text);
|
| 113 |
-
window.speechSynthesis.speak(speech);
|
| 114 |
-
}
|
| 115 |
-
</script>
|
| 116 |
-
</head>
|
| 117 |
-
<body>
|
| 118 |
-
<h1>🔊 Read It Aloud</h1>
|
| 119 |
-
<textarea id="textArea" rows="10" cols="80">
|
| 120 |
-
'''
|
| 121 |
-
documentHTML5 = documentHTML5 + result
|
| 122 |
-
documentHTML5 = documentHTML5 + '''
|
| 123 |
-
</textarea>
|
| 124 |
-
<br>
|
| 125 |
-
<button onclick="readAloud()">🔊 Read Aloud</button>
|
| 126 |
-
</body>
|
| 127 |
-
</html>
|
| 128 |
-
'''
|
| 129 |
-
gr.HTML(documentHTML5)
|
| 130 |
-
|
| 131 |
-
|
| 132 |
with gr.Blocks(theme = gr.themes.Soft()) as demo:
|
| 133 |
header = gr.Markdown(header_text)
|
| 134 |
|
|
@@ -137,7 +110,7 @@ with gr.Blocks(theme = gr.themes.Soft()) as demo:
|
|
| 137 |
|
| 138 |
with gr.Accordion("Advanced Settings", open=False):
|
| 139 |
with gr.Row(equal_height = True):
|
| 140 |
-
llm_model = gr.Dropdown(choices = llm_models_to_choose, value = 'mistralai/Mistral-7B-Instruct-v0.
|
| 141 |
llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results as context")
|
| 142 |
database_src = gr.Dropdown(choices = database_choices, value = index_info, label = 'Search Source')
|
| 143 |
stream_results = gr.Checkbox(value = True, label = "Stream output", visible = False)
|
|
@@ -146,7 +119,7 @@ with gr.Blocks(theme = gr.themes.Soft()) as demo:
|
|
| 146 |
input = gr.Textbox(show_label = False, visible = False)
|
| 147 |
gr_md = gr.Markdown(mark_text + md_text_initial)
|
| 148 |
|
| 149 |
-
def update_with_rag_md(message, llm_results_use = 5, database_choice = index_info, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.
|
| 150 |
prompt_text_from_data = ""
|
| 151 |
database_to_use = database_choice
|
| 152 |
if database_choice == index_info:
|
|
@@ -178,7 +151,7 @@ with gr.Blocks(theme = gr.themes.Soft()) as demo:
|
|
| 178 |
prompt = get_prompt_text(message, prompt_text_from_data, llm_model_picked = llm_model_picked)
|
| 179 |
return md_text_updated, prompt
|
| 180 |
|
| 181 |
-
def ask_llm(prompt, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.
|
| 182 |
model_disabled_text = "LLM Model is disabled"
|
| 183 |
output = ""
|
| 184 |
|
|
@@ -191,7 +164,7 @@ with gr.Blocks(theme = gr.themes.Soft()) as demo:
|
|
| 191 |
else:
|
| 192 |
return model_disabled_text
|
| 193 |
|
| 194 |
-
client = InferenceClient(llm_model_picked)
|
| 195 |
try:
|
| 196 |
stream = client.text_generation(prompt, **generate_kwargs, stream=stream_outputs, details=False, return_full_text=False)
|
| 197 |
|
|
@@ -202,7 +175,6 @@ with gr.Blocks(theme = gr.themes.Soft()) as demo:
|
|
| 202 |
if stream_outputs:
|
| 203 |
for response in stream:
|
| 204 |
output += response
|
| 205 |
-
SaveResponseAndRead(response)
|
| 206 |
yield output
|
| 207 |
return output
|
| 208 |
else:
|
|
@@ -211,4 +183,4 @@ with gr.Blocks(theme = gr.themes.Soft()) as demo:
|
|
| 211 |
|
| 212 |
msg.submit(update_with_rag_md, [msg, llm_results, database_src, llm_model], [gr_md, input]).success(ask_llm, [input, llm_model, stream_results], output_text)
|
| 213 |
|
| 214 |
-
demo.queue().launch()
|
|
|
|
| 6 |
import re
|
| 7 |
from datetime import datetime
|
| 8 |
import json
|
| 9 |
+
import os
|
| 10 |
import arxiv
|
| 11 |
from utils import get_md_text_abstract, search_cleaner, get_arxiv_live_search
|
| 12 |
|
| 13 |
retrieve_results = 10
|
| 14 |
show_examples = False
|
| 15 |
+
llm_models_to_choose = ['mistralai/Mixtral-8x7B-Instruct-v0.1','mistralai/Mistral-7B-Instruct-v0.3', 'google/gemma-2-2b-it', 'None']
|
| 16 |
+
|
| 17 |
+
token = os.getenv("HF_TOKEN")
|
| 18 |
|
| 19 |
generate_kwargs = dict(
|
| 20 |
temperature = None,
|
|
|
|
| 35 |
gr.Warning("Retriever not working!")
|
| 36 |
|
| 37 |
## Header
|
| 38 |
+
mark_text = '# 🔍 Search Results\n'
|
| 39 |
+
header_text = "# ArXiv CS RAG \n"
|
| 40 |
|
| 41 |
try:
|
| 42 |
with open("README.md", "r") as f:
|
|
|
|
| 55 |
## Arxiv API
|
| 56 |
arx_client = arxiv.Client()
|
| 57 |
is_arxiv_available = True
|
| 58 |
+
check_arxiv_result = get_arxiv_live_search("What is Mistral?", arx_client, retrieve_results)
|
| 59 |
if len(check_arxiv_result) == 0:
|
| 60 |
is_arxiv_available = False
|
| 61 |
print("Arxiv search not working, switching to default search ...")
|
|
|
|
| 82 |
date = inp['document_metadata']['_time']
|
| 83 |
return f"{rank}. <b> {title} </b> \n Date : {date} \n Abstract: {content}"
|
| 84 |
|
| 85 |
+
def get_prompt_text(question, context, formatted = True, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.3'):
|
| 86 |
if formatted:
|
| 87 |
sys_instruction = f"Context:\n {context} \n Given the following scientific paper abstracts, take a deep breath and lets think step by step to answer the question. Cite the titles of your sources when answering, do not cite links or dates."
|
| 88 |
message = f"Question: {question}"
|
|
|
|
| 102 |
def get_rag(message):
|
| 103 |
return get_references(message, RAG)
|
| 104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
with gr.Blocks(theme = gr.themes.Soft()) as demo:
|
| 106 |
header = gr.Markdown(header_text)
|
| 107 |
|
|
|
|
| 110 |
|
| 111 |
with gr.Accordion("Advanced Settings", open=False):
|
| 112 |
with gr.Row(equal_height = True):
|
| 113 |
+
llm_model = gr.Dropdown(choices = llm_models_to_choose, value = 'mistralai/Mistral-7B-Instruct-v0.3', label = 'LLM Model')
|
| 114 |
llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results as context")
|
| 115 |
database_src = gr.Dropdown(choices = database_choices, value = index_info, label = 'Search Source')
|
| 116 |
stream_results = gr.Checkbox(value = True, label = "Stream output", visible = False)
|
|
|
|
| 119 |
input = gr.Textbox(show_label = False, visible = False)
|
| 120 |
gr_md = gr.Markdown(mark_text + md_text_initial)
|
| 121 |
|
| 122 |
+
def update_with_rag_md(message, llm_results_use = 5, database_choice = index_info, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.3'):
|
| 123 |
prompt_text_from_data = ""
|
| 124 |
database_to_use = database_choice
|
| 125 |
if database_choice == index_info:
|
|
|
|
| 151 |
prompt = get_prompt_text(message, prompt_text_from_data, llm_model_picked = llm_model_picked)
|
| 152 |
return md_text_updated, prompt
|
| 153 |
|
| 154 |
+
def ask_llm(prompt, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.3', stream_outputs = False):
|
| 155 |
model_disabled_text = "LLM Model is disabled"
|
| 156 |
output = ""
|
| 157 |
|
|
|
|
| 164 |
else:
|
| 165 |
return model_disabled_text
|
| 166 |
|
| 167 |
+
client = InferenceClient(llm_model_picked, token = token)
|
| 168 |
try:
|
| 169 |
stream = client.text_generation(prompt, **generate_kwargs, stream=stream_outputs, details=False, return_full_text=False)
|
| 170 |
|
|
|
|
| 175 |
if stream_outputs:
|
| 176 |
for response in stream:
|
| 177 |
output += response
|
|
|
|
| 178 |
yield output
|
| 179 |
return output
|
| 180 |
else:
|
|
|
|
| 183 |
|
| 184 |
msg.submit(update_with_rag_md, [msg, llm_results, database_src, llm_model], [gr_md, input]).success(ask_llm, [input, llm_model, stream_results], output_text)
|
| 185 |
|
| 186 |
+
demo.queue().launch()
|