Spaces:
Build error
Build error
| import gradio as gr | |
| import requests | |
| import os | |
| ##Bloom Inference API | |
| API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom" # Models on HF feature inference API which allows direct call and easy interface | |
| HF_TOKEN = os.environ["HF_TOKEN"] # Add a token called HF_TOKEN under profile in settings access tokens. Then copy it to the repository secret in this spaces settings panel. os.environ reads from there. | |
| # For headers the bearer token needs to incclude your HF_TOKEN value. | |
| headers = {"Authorization": f"Bearer {HF_TOKEN}"} | |
| # Improved text generation function | |
| def text_generate(prompt, generated_txt): | |
| # Initialize Thoughts variable to aggregate text | |
| Thoughts = "" | |
| # Debug: display the prompt | |
| Thoughts += f"Prompt: {prompt}\n" | |
| json_ = { | |
| "inputs": prompt, | |
| "parameters": { | |
| "top_p": 0.9, | |
| "temperature": 1.1, | |
| "return_full_text": True, | |
| "do_sample": True, | |
| }, | |
| "options": { | |
| "use_cache": True, | |
| "wait_for_model": True, | |
| }, | |
| } | |
| response = requests.post(API_URL, headers=headers, json=json_) | |
| output = response.json() | |
| # Debug: display the output | |
| Thoughts += f"Output: {output}\n" | |
| output_tmp = output[0]['generated_text'] | |
| # Debug: display the output_tmp | |
| Thoughts += f"output_tmp is: {output_tmp}\n" | |
| solution = output_tmp.split("\nQ:")[0] | |
| # Debug: display the solution after splitting | |
| Thoughts += f"Final response after splits is: {solution}\n" | |
| if '\nOutput:' in solution: | |
| final_solution = solution.split("\nOutput:")[0] | |
| Thoughts += f"Response after removing output is: {final_solution}\n" | |
| elif '\n\n' in solution: | |
| final_solution = solution.split("\n\n")[0] | |
| Thoughts += f"Response after removing new line entries is: {final_solution}\n" | |
| else: | |
| final_solution = solution | |
| if len(generated_txt) == 0: | |
| display_output = final_solution | |
| else: | |
| display_output = generated_txt[:-len(prompt)] + final_solution | |
| new_prompt = final_solution[len(prompt):] | |
| # Debug: display the new prompt for the next cycle | |
| Thoughts += f"new prompt for next cycle is: {new_prompt}\n" | |
| Thoughts += f"display_output for printing on screen is: {display_output}\n" | |
| if len(new_prompt) == 0: | |
| temp_text = display_output[::-1] | |
| Thoughts += f"What is the last character of the sentence?: {temp_text[0]}\n" | |
| if temp_text[1] == '.': | |
| first_period_loc = temp_text[2:].find('.') + 1 | |
| Thoughts += f"Location of last Period is: {first_period_loc}\n" | |
| new_prompt = display_output[-first_period_loc:-1] | |
| Thoughts += f"Not sending blank as prompt so new prompt for next cycle is: {new_prompt}\n" | |
| else: | |
| first_period_loc = temp_text.find('.') | |
| Thoughts += f"Location of last Period is: {first_period_loc}\n" | |
| new_prompt = display_output[-first_period_loc:-1] | |
| Thoughts += f"Not sending blank as prompt so new prompt for next cycle is: {new_prompt}\n" | |
| display_output = display_output[:-1] | |
| return display_output, new_prompt, Thoughts | |
| # Text generation | |
| def text_generate_old(prompt, generated_txt): | |
| #Prints to debug the code | |
| print(f"*****Inside text_generate - Prompt is :{prompt}") | |
| json_ = {"inputs": prompt, | |
| "parameters": | |
| { | |
| "top_p": 0.9, | |
| "temperature": 1.1, | |
| #"max_new_tokens": 64, | |
| "return_full_text": True, | |
| "do_sample":True, | |
| }, | |
| "options": | |
| {"use_cache": True, | |
| "wait_for_model": True, | |
| },} | |
| response = requests.post(API_URL, headers=headers, json=json_) | |
| print(f"Response is : {response}") | |
| output = response.json() | |
| print(f"output is : {output}") | |
| output_tmp = output[0]['generated_text'] | |
| print(f"output_tmp is: {output_tmp}") | |
| solution = output_tmp.split("\nQ:")[0] | |
| print(f"Final response after splits is: {solution}") | |
| if '\nOutput:' in solution: | |
| final_solution = solution.split("\nOutput:")[0] | |
| print(f"Response after removing output is: {final_solution}") | |
| elif '\n\n' in solution: | |
| final_solution = solution.split("\n\n")[0] | |
| print(f"Response after removing new line entries is: {final_solution}") | |
| else: | |
| final_solution = solution | |
| if len(generated_txt) == 0 : | |
| display_output = final_solution | |
| else: | |
| display_output = generated_txt[:-len(prompt)] + final_solution | |
| new_prompt = final_solution[len(prompt):] | |
| print(f"New prompt for next cycle: {new_prompt}") | |
| print(f"Output final is : {display_output}") | |
| if len(new_prompt) == 0: | |
| temp_text = display_output[::-1] | |
| print(f"Last character of sentence: {temp_text[0]}") | |
| if temp_text[1] == '.': | |
| first_period_loc = temp_text[2:].find('.') + 1 | |
| print(f"Location of last Period is: {first_period_loc}") | |
| new_prompt = display_output[-first_period_loc:-1] | |
| print(f"Not sending blank as prompt so new prompt for next cycle is : {new_prompt}") | |
| else: | |
| print("HERE") | |
| first_period_loc = temp_text.find('.') | |
| print(f"Last Period is : {first_period_loc}") | |
| new_prompt = display_output[-first_period_loc:-1] | |
| print(f"New prompt for next cycle is : {new_prompt}") | |
| display_output = display_output[:-1] | |
| return display_output, new_prompt | |
| demo = gr.Blocks() | |
| with demo: | |
| with gr.Row(): | |
| input_prompt = gr.Textbox(label="Write some text to get started...", lines=3, value="Dear human philosophers, I read your comments on my abilities and limitations with great interest.") | |
| with gr.Row(): | |
| generated_txt = gr.Textbox(lines=5, visible = True) | |
| with gr.Row(): | |
| Thoughts = gr.Textbox(lines=10, visible = True) | |
| generate = gr.Button("Generate") | |
| generate.click(text_generate, inputs=[input_prompt, generated_txt], outputs=[generated_txt, input_prompt, Thoughts]) | |
| demo.launch(enable_queue=True, debug=True) |