Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import altair as alt
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AlbertTokenizer, AlbertForSequenceClassification
|
| 5 |
+
|
| 6 |
+
# Load pre-trained model and tokenizer
|
| 7 |
+
model_name = "albert-base-v2"
|
| 8 |
+
tokenizer = AlbertTokenizer.from_pretrained(model_name)
|
| 9 |
+
model = AlbertForSequenceClassification.from_pretrained(model_name)
|
| 10 |
+
|
| 11 |
+
# Define function to classify input text
|
| 12 |
+
def classify_text(text):
|
| 13 |
+
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
|
| 14 |
+
outputs = model(**inputs)
|
| 15 |
+
logits = outputs.logits.detach().numpy()[0]
|
| 16 |
+
probabilities = torch.softmax(torch.tensor(logits), dim=0).tolist()
|
| 17 |
+
return probabilities
|
| 18 |
+
|
| 19 |
+
# Set up Streamlit app
|
| 20 |
+
st.title("ALBERT Text Classification App")
|
| 21 |
+
|
| 22 |
+
# Create input box for user to enter text
|
| 23 |
+
text_input = st.text_area("Enter text to classify", height=200)
|
| 24 |
+
|
| 25 |
+
# Classify input text and display results
|
| 26 |
+
if st.button("Classify"):
|
| 27 |
+
if text_input:
|
| 28 |
+
probabilities = classify_text(text_input)
|
| 29 |
+
df = pd.DataFrame({
|
| 30 |
+
'Label': ['Negative', 'Positive'],
|
| 31 |
+
'Probability': probabilities
|
| 32 |
+
})
|
| 33 |
+
chart = alt.Chart(df).mark_bar().encode(
|
| 34 |
+
x='Probability',
|
| 35 |
+
y=alt.Y('Label', sort=['Negative', 'Positive'])
|
| 36 |
+
)
|
| 37 |
+
st.write(chart)
|
| 38 |
+
else:
|
| 39 |
+
st.write("Please enter some text to classify.")
|