Spaces:
Runtime error
Runtime error
Commit
·
d7233ea
1
Parent(s):
4c42c3b
added initial NER app
Browse files- app.py +52 -0
- requirements.txt +3 -0
app.py
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from annotated_text import annotated_text
|
| 3 |
+
import transformers
|
| 4 |
+
|
| 5 |
+
ENTITY_TO_COLOR = {
|
| 6 |
+
'PER': '#8ef',
|
| 7 |
+
'LOC': '#faa',
|
| 8 |
+
'ORG': '#afa',
|
| 9 |
+
'MISC': '#fea',
|
| 10 |
+
}
|
| 11 |
+
|
| 12 |
+
@st.cache(allow_output_mutation=True, show_spinner=False)
|
| 13 |
+
def get_pipe():
|
| 14 |
+
model_name = "dslim/bert-base-NER"
|
| 15 |
+
model = transformers.AutoModelForTokenClassification.from_pretrained(model_name)
|
| 16 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
|
| 17 |
+
pipe = transformers.pipeline("token-classification", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
| 18 |
+
return pipe
|
| 19 |
+
|
| 20 |
+
def parse_text(text, prediction):
|
| 21 |
+
start = 0
|
| 22 |
+
parsed_text = []
|
| 23 |
+
for p in prediction:
|
| 24 |
+
parsed_text.append(text[start:p["start"]])
|
| 25 |
+
parsed_text.append((p["word"], p["entity_group"], ENTITY_TO_COLOR[p["entity_group"]]))
|
| 26 |
+
start = p["end"]
|
| 27 |
+
parsed_text.append(text[start:])
|
| 28 |
+
return parsed_text
|
| 29 |
+
|
| 30 |
+
st.set_page_config(page_title="Named Entity Recognition")
|
| 31 |
+
st.title("Named Entity Recognition")
|
| 32 |
+
st.write("Type text into the text box and then press 'Predict' to get the named entities.")
|
| 33 |
+
|
| 34 |
+
default_text = "My name is John Smith. I work at Microsoft. I live in Paris. My favorite painting is the Mona Lisa."
|
| 35 |
+
|
| 36 |
+
text = st.text_area('Enter text here:', value=default_text)
|
| 37 |
+
submit = st.button('Predict')
|
| 38 |
+
|
| 39 |
+
with st.spinner("Loading model..."):
|
| 40 |
+
pipe = get_pipe()
|
| 41 |
+
|
| 42 |
+
if (submit and len(text.strip()) > 0) or len(text.strip()) > 0:
|
| 43 |
+
|
| 44 |
+
prediction = pipe(text)
|
| 45 |
+
|
| 46 |
+
parsed_text = parse_text(text, prediction)
|
| 47 |
+
|
| 48 |
+
st.header("Prediction:")
|
| 49 |
+
annotated_text(*parsed_text)
|
| 50 |
+
|
| 51 |
+
st.header('Raw values:')
|
| 52 |
+
st.json(prediction)
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
torch
|
| 3 |
+
st-annotated-text
|