Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,10 +3,10 @@ import torch
|
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
| 4 |
from threading import Thread
|
| 5 |
import gradio as gr
|
| 6 |
-
import os
|
| 7 |
|
| 8 |
MODEL_NAME = os.getenv('MODEL_ID')
|
| 9 |
TOKEN = os.getenv('TOKEN')
|
|
|
|
| 10 |
print("Loading model...")
|
| 11 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True, token=TOKEN)
|
| 12 |
model = AutoModelForCausalLM.from_pretrained(
|
|
@@ -18,10 +18,10 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
| 18 |
)
|
| 19 |
print("Model loaded.")
|
| 20 |
|
| 21 |
-
|
| 22 |
def playground(
|
| 23 |
message,
|
| 24 |
history,
|
|
|
|
| 25 |
max_new_tokens,
|
| 26 |
temperature,
|
| 27 |
repetition_penalty,
|
|
@@ -31,24 +31,30 @@ def playground(
|
|
| 31 |
if not isinstance(message, str) or not message.strip():
|
| 32 |
yield ""
|
| 33 |
return
|
| 34 |
-
|
| 35 |
-
# Build conversation
|
| 36 |
conversation = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
for user_msg, bot_msg in history:
|
| 38 |
conversation.append({"role": "user", "content": user_msg})
|
| 39 |
if bot_msg:
|
| 40 |
conversation.append({"role": "assistant", "content": bot_msg})
|
|
|
|
| 41 |
conversation.append({"role": "user", "content": message})
|
| 42 |
-
|
| 43 |
if hasattr(tokenizer, "apply_chat_template"):
|
| 44 |
prompt = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
| 45 |
else:
|
| 46 |
prompt = "\n".join([f"{msg['role']}: {msg['content']}" for msg in conversation]) + "\nassistant:"
|
| 47 |
-
|
| 48 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 49 |
-
|
| 50 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 51 |
-
|
| 52 |
generation_kwargs = dict(
|
| 53 |
**inputs,
|
| 54 |
streamer=streamer,
|
|
@@ -60,31 +66,39 @@ def playground(
|
|
| 60 |
do_sample=True if temperature > 0 else False,
|
| 61 |
pad_token_id=tokenizer.eos_token_id
|
| 62 |
)
|
| 63 |
-
|
| 64 |
-
# Start generation in a background thread
|
| 65 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 66 |
thread.start()
|
| 67 |
-
|
| 68 |
generated_text = ""
|
| 69 |
for new_text in streamer:
|
| 70 |
generated_text += new_text
|
| 71 |
yield generated_text
|
| 72 |
-
|
| 73 |
thread.join()
|
| 74 |
|
| 75 |
-
|
| 76 |
with gr.Blocks(fill_height=True, fill_width=True) as app:
|
| 77 |
with gr.Sidebar():
|
| 78 |
gr.Markdown("## Playground by UltimaX Intelligence")
|
| 79 |
gr.HTML("""
|
| 80 |
Runs <b><a href="https://huggingface.co/beyoru/Qwen3-0.9B-A0.6B" target="_blank">
|
| 81 |
beyoru/Qwen3-0.9B-A0.6B</a></b> via <b>Hugging Face Transformers</b>.<br><br>
|
| 82 |
-
<b>
|
| 83 |
<a href="https://www.buymeacoffee.com/ductransa0g" target="_blank">
|
| 84 |
<img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" width="150px">
|
| 85 |
-
|
| 86 |
-
</p>
|
| 87 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
gr.Markdown("---")
|
| 89 |
gr.Markdown("## Generation Parameters")
|
| 90 |
max_new_tokens = gr.Slider(32, 4096, value=2048, step=32, label="Max New Tokens")
|
|
@@ -92,10 +106,10 @@ with gr.Blocks(fill_height=True, fill_width=True) as app:
|
|
| 92 |
repetition_penalty = gr.Slider(0.1, 2.0, value=1.0, step=0.1, label="Repetition Penalty")
|
| 93 |
top_k = gr.Slider(0, 100, value=20, step=1, label="Top K (0 = off)")
|
| 94 |
top_p = gr.Slider(0.0, 1.0, value=0.95, step=0.05, label="Top P")
|
| 95 |
-
|
| 96 |
gr.ChatInterface(
|
| 97 |
fn=playground,
|
| 98 |
-
additional_inputs=[max_new_tokens, temperature, repetition_penalty, top_k, top_p],
|
| 99 |
chatbot=gr.Chatbot(
|
| 100 |
label="Qwen3-0.9B-A0.6B",
|
| 101 |
show_copy_button=True,
|
|
|
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
| 4 |
from threading import Thread
|
| 5 |
import gradio as gr
|
|
|
|
| 6 |
|
| 7 |
MODEL_NAME = os.getenv('MODEL_ID')
|
| 8 |
TOKEN = os.getenv('TOKEN')
|
| 9 |
+
|
| 10 |
print("Loading model...")
|
| 11 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True, token=TOKEN)
|
| 12 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
| 18 |
)
|
| 19 |
print("Model loaded.")
|
| 20 |
|
|
|
|
| 21 |
def playground(
|
| 22 |
message,
|
| 23 |
history,
|
| 24 |
+
system_prompt,
|
| 25 |
max_new_tokens,
|
| 26 |
temperature,
|
| 27 |
repetition_penalty,
|
|
|
|
| 31 |
if not isinstance(message, str) or not message.strip():
|
| 32 |
yield ""
|
| 33 |
return
|
| 34 |
+
|
| 35 |
+
# Build conversation với system prompt
|
| 36 |
conversation = []
|
| 37 |
+
|
| 38 |
+
# Thêm system prompt nếu có
|
| 39 |
+
if system_prompt and system_prompt.strip():
|
| 40 |
+
conversation.append({"role": "system", "content": system_prompt.strip()})
|
| 41 |
+
|
| 42 |
+
# Thêm lịch sử chat
|
| 43 |
for user_msg, bot_msg in history:
|
| 44 |
conversation.append({"role": "user", "content": user_msg})
|
| 45 |
if bot_msg:
|
| 46 |
conversation.append({"role": "assistant", "content": bot_msg})
|
| 47 |
+
|
| 48 |
conversation.append({"role": "user", "content": message})
|
| 49 |
+
|
| 50 |
if hasattr(tokenizer, "apply_chat_template"):
|
| 51 |
prompt = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
| 52 |
else:
|
| 53 |
prompt = "\n".join([f"{msg['role']}: {msg['content']}" for msg in conversation]) + "\nassistant:"
|
| 54 |
+
|
| 55 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
|
|
|
| 56 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 57 |
+
|
| 58 |
generation_kwargs = dict(
|
| 59 |
**inputs,
|
| 60 |
streamer=streamer,
|
|
|
|
| 66 |
do_sample=True if temperature > 0 else False,
|
| 67 |
pad_token_id=tokenizer.eos_token_id
|
| 68 |
)
|
| 69 |
+
|
|
|
|
| 70 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 71 |
thread.start()
|
| 72 |
+
|
| 73 |
generated_text = ""
|
| 74 |
for new_text in streamer:
|
| 75 |
generated_text += new_text
|
| 76 |
yield generated_text
|
| 77 |
+
|
| 78 |
thread.join()
|
| 79 |
|
|
|
|
| 80 |
with gr.Blocks(fill_height=True, fill_width=True) as app:
|
| 81 |
with gr.Sidebar():
|
| 82 |
gr.Markdown("## Playground by UltimaX Intelligence")
|
| 83 |
gr.HTML("""
|
| 84 |
Runs <b><a href="https://huggingface.co/beyoru/Qwen3-0.9B-A0.6B" target="_blank">
|
| 85 |
beyoru/Qwen3-0.9B-A0.6B</a></b> via <b>Hugging Face Transformers</b>.<br><br>
|
| 86 |
+
<b>Support me at:</b>.<br><br>
|
| 87 |
<a href="https://www.buymeacoffee.com/ductransa0g" target="_blank">
|
| 88 |
<img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" width="150px">
|
| 89 |
+
</a>
|
|
|
|
| 90 |
""")
|
| 91 |
+
|
| 92 |
+
gr.Markdown("---")
|
| 93 |
+
gr.Markdown("## System Prompt")
|
| 94 |
+
system_prompt = gr.Textbox(
|
| 95 |
+
label="System Prompt",
|
| 96 |
+
placeholder="Enter custom system instructions here (optional)...",
|
| 97 |
+
lines=4,
|
| 98 |
+
value="You are a helpful AI assistant.",
|
| 99 |
+
info="AI role custome"
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
gr.Markdown("---")
|
| 103 |
gr.Markdown("## Generation Parameters")
|
| 104 |
max_new_tokens = gr.Slider(32, 4096, value=2048, step=32, label="Max New Tokens")
|
|
|
|
| 106 |
repetition_penalty = gr.Slider(0.1, 2.0, value=1.0, step=0.1, label="Repetition Penalty")
|
| 107 |
top_k = gr.Slider(0, 100, value=20, step=1, label="Top K (0 = off)")
|
| 108 |
top_p = gr.Slider(0.0, 1.0, value=0.95, step=0.05, label="Top P")
|
| 109 |
+
|
| 110 |
gr.ChatInterface(
|
| 111 |
fn=playground,
|
| 112 |
+
additional_inputs=[system_prompt, max_new_tokens, temperature, repetition_penalty, top_k, top_p],
|
| 113 |
chatbot=gr.Chatbot(
|
| 114 |
label="Qwen3-0.9B-A0.6B",
|
| 115 |
show_copy_button=True,
|