|
|
import gradio as gr |
|
|
import numpy as np |
|
|
|
|
|
import spaces |
|
|
import torch |
|
|
import spaces |
|
|
import random |
|
|
|
|
|
from diffusers import FluxFillPipeline |
|
|
from PIL import Image |
|
|
|
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
MAX_IMAGE_SIZE = 2048 |
|
|
|
|
|
pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16).to("cuda") |
|
|
|
|
|
def calculate_optimal_dimensions(image: Image.Image): |
|
|
|
|
|
original_width, original_height = image.size |
|
|
|
|
|
|
|
|
MIN_ASPECT_RATIO = 9 / 16 |
|
|
MAX_ASPECT_RATIO = 16 / 9 |
|
|
FIXED_DIMENSION = 1024 |
|
|
|
|
|
|
|
|
original_aspect_ratio = original_width / original_height |
|
|
|
|
|
|
|
|
if original_aspect_ratio > 1: |
|
|
width = FIXED_DIMENSION |
|
|
height = round(FIXED_DIMENSION / original_aspect_ratio) |
|
|
else: |
|
|
height = FIXED_DIMENSION |
|
|
width = round(FIXED_DIMENSION * original_aspect_ratio) |
|
|
|
|
|
|
|
|
width = (width // 8) * 8 |
|
|
height = (height // 8) * 8 |
|
|
|
|
|
|
|
|
calculated_aspect_ratio = width / height |
|
|
if calculated_aspect_ratio > MAX_ASPECT_RATIO: |
|
|
width = (height * MAX_ASPECT_RATIO // 8) * 8 |
|
|
elif calculated_aspect_ratio < MIN_ASPECT_RATIO: |
|
|
height = (width / MIN_ASPECT_RATIO // 8) * 8 |
|
|
|
|
|
|
|
|
width = max(width, 576) if width == FIXED_DIMENSION else width |
|
|
height = max(height, 576) if height == FIXED_DIMENSION else height |
|
|
|
|
|
return width, height |
|
|
|
|
|
@spaces.GPU |
|
|
def infer(edit_images, prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): |
|
|
image = edit_images["background"] |
|
|
width, height = calculate_optimal_dimensions(image) |
|
|
mask = edit_images["layers"][0] |
|
|
if randomize_seed: |
|
|
seed = random.randint(0, MAX_SEED) |
|
|
image = pipe( |
|
|
prompt=prompt, |
|
|
image=image, |
|
|
mask_image=mask, |
|
|
height=height, |
|
|
width=width, |
|
|
guidance_scale=guidance_scale, |
|
|
num_inference_steps=num_inference_steps, |
|
|
generator=torch.Generator("cpu").manual_seed(seed) |
|
|
).images[0] |
|
|
return image, seed |
|
|
|
|
|
examples = [ |
|
|
"a tiny astronaut hatching from an egg on the moon", |
|
|
"a cat holding a sign that says hello world", |
|
|
"an anime illustration of a wiener schnitzel", |
|
|
] |
|
|
|
|
|
css=""" |
|
|
#col-container { |
|
|
margin: 0 auto; |
|
|
max-width: 1000px; |
|
|
} |
|
|
""" |
|
|
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
|
|
|
with gr.Column(elem_id="col-container"): |
|
|
gr.Markdown(f"""# FLUX.1 Fill [dev] |
|
|
12B param rectified flow transformer structural conditioning tuned, guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) |
|
|
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] |
|
|
""") |
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
edit_image = gr.ImageEditor( |
|
|
label='Upload and draw mask for inpainting', |
|
|
type='pil', |
|
|
sources=["upload", "webcam"], |
|
|
image_mode='RGB', |
|
|
layers=False, |
|
|
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"), |
|
|
height=600 |
|
|
) |
|
|
prompt = gr.Text( |
|
|
label="Prompt", |
|
|
show_label=False, |
|
|
max_lines=1, |
|
|
placeholder="Enter your prompt", |
|
|
container=False, |
|
|
) |
|
|
run_button = gr.Button("Run") |
|
|
|
|
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
|
|
|
|
seed = gr.Slider( |
|
|
label="Seed", |
|
|
minimum=0, |
|
|
maximum=MAX_SEED, |
|
|
step=1, |
|
|
value=0, |
|
|
) |
|
|
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
|
|
with gr.Row(): |
|
|
|
|
|
width = gr.Slider( |
|
|
label="Width", |
|
|
minimum=256, |
|
|
maximum=MAX_IMAGE_SIZE, |
|
|
step=32, |
|
|
value=1024, |
|
|
visible=False |
|
|
) |
|
|
|
|
|
height = gr.Slider( |
|
|
label="Height", |
|
|
minimum=256, |
|
|
maximum=MAX_IMAGE_SIZE, |
|
|
step=32, |
|
|
value=1024, |
|
|
visible=False |
|
|
) |
|
|
|
|
|
with gr.Row(): |
|
|
|
|
|
guidance_scale = gr.Slider( |
|
|
label="Guidance Scale", |
|
|
minimum=1, |
|
|
maximum=30, |
|
|
step=0.5, |
|
|
value=50, |
|
|
) |
|
|
|
|
|
num_inference_steps = gr.Slider( |
|
|
label="Number of inference steps", |
|
|
minimum=1, |
|
|
maximum=50, |
|
|
step=1, |
|
|
value=28, |
|
|
) |
|
|
|
|
|
gr.on( |
|
|
triggers=[run_button.click, prompt.submit], |
|
|
fn = infer, |
|
|
inputs = [edit_image, prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], |
|
|
outputs = [result, seed] |
|
|
) |
|
|
|
|
|
demo.launch() |