Spaces:
Runtime error
Runtime error
| <!--Copyright 2020 The HuggingFace Team. All rights reserved. | |
| Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with | |
| the License. You may obtain a copy of the License at | |
| http://www.apache.org/licenses/LICENSE-2.0 | |
| Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on | |
| an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the | |
| specific language governing permissions and limitations under the License. | |
| --> | |
| # Converting From Tensorflow Checkpoints | |
| A command-line interface is provided to convert original Bert/GPT/GPT-2/Transformer-XL/XLNet/XLM checkpoints to models | |
| that can be loaded using the `from_pretrained` methods of the library. | |
| <Tip> | |
| Since 2.3.0 the conversion script is now part of the transformers CLI (**transformers-cli**) available in any | |
| transformers >= 2.3.0 installation. | |
| The documentation below reflects the **transformers-cli convert** command format. | |
| </Tip> | |
| ## BERT | |
| You can convert any TensorFlow checkpoint for BERT (in particular [the pre-trained models released by Google](https://github.com/google-research/bert#pre-trained-models)) in a PyTorch save file by using the | |
| [convert_bert_original_tf_checkpoint_to_pytorch.py](https://github.com/huggingface/transformers/tree/main/src/transformers/models/bert/convert_bert_original_tf_checkpoint_to_pytorch.py) script. | |
| This CLI takes as input a TensorFlow checkpoint (three files starting with `bert_model.ckpt`) and the associated | |
| configuration file (`bert_config.json`), and creates a PyTorch model for this configuration, loads the weights from | |
| the TensorFlow checkpoint in the PyTorch model and saves the resulting model in a standard PyTorch save file that can | |
| be imported using `from_pretrained()` (see example in [quicktour](quicktour) , [run_glue.py](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification/run_glue.py) ). | |
| You only need to run this conversion script **once** to get a PyTorch model. You can then disregard the TensorFlow | |
| checkpoint (the three files starting with `bert_model.ckpt`) but be sure to keep the configuration file (\ | |
| `bert_config.json`) and the vocabulary file (`vocab.txt`) as these are needed for the PyTorch model too. | |
| To run this specific conversion script you will need to have TensorFlow and PyTorch installed (`pip install tensorflow`). The rest of the repository only requires PyTorch. | |
| Here is an example of the conversion process for a pre-trained `BERT-Base Uncased` model: | |
| ```bash | |
| export BERT_BASE_DIR=/path/to/bert/uncased_L-12_H-768_A-12 | |
| transformers-cli convert --model_type bert \ | |
| --tf_checkpoint $BERT_BASE_DIR/bert_model.ckpt \ | |
| --config $BERT_BASE_DIR/bert_config.json \ | |
| --pytorch_dump_output $BERT_BASE_DIR/pytorch_model.bin | |
| ``` | |
| You can download Google's pre-trained models for the conversion [here](https://github.com/google-research/bert#pre-trained-models). | |
| ## ALBERT | |
| Convert TensorFlow model checkpoints of ALBERT to PyTorch using the | |
| [convert_albert_original_tf_checkpoint_to_pytorch.py](https://github.com/huggingface/transformers/tree/main/src/transformers/models/albert/convert_albert_original_tf_checkpoint_to_pytorch.py) script. | |
| The CLI takes as input a TensorFlow checkpoint (three files starting with `model.ckpt-best`) and the accompanying | |
| configuration file (`albert_config.json`), then creates and saves a PyTorch model. To run this conversion you will | |
| need to have TensorFlow and PyTorch installed. | |
| Here is an example of the conversion process for the pre-trained `ALBERT Base` model: | |
| ```bash | |
| export ALBERT_BASE_DIR=/path/to/albert/albert_base | |
| transformers-cli convert --model_type albert \ | |
| --tf_checkpoint $ALBERT_BASE_DIR/model.ckpt-best \ | |
| --config $ALBERT_BASE_DIR/albert_config.json \ | |
| --pytorch_dump_output $ALBERT_BASE_DIR/pytorch_model.bin | |
| ``` | |
| You can download Google's pre-trained models for the conversion [here](https://github.com/google-research/albert#pre-trained-models). | |
| ## OpenAI GPT | |
| Here is an example of the conversion process for a pre-trained OpenAI GPT model, assuming that your NumPy checkpoint | |
| save as the same format than OpenAI pretrained model (see [here](https://github.com/openai/finetune-transformer-lm)\ | |
| ) | |
| ```bash | |
| export OPENAI_GPT_CHECKPOINT_FOLDER_PATH=/path/to/openai/pretrained/numpy/weights | |
| transformers-cli convert --model_type gpt \ | |
| --tf_checkpoint $OPENAI_GPT_CHECKPOINT_FOLDER_PATH \ | |
| --pytorch_dump_output $PYTORCH_DUMP_OUTPUT \ | |
| [--config OPENAI_GPT_CONFIG] \ | |
| [--finetuning_task_name OPENAI_GPT_FINETUNED_TASK] \ | |
| ``` | |
| ## OpenAI GPT-2 | |
| Here is an example of the conversion process for a pre-trained OpenAI GPT-2 model (see [here](https://github.com/openai/gpt-2)) | |
| ```bash | |
| export OPENAI_GPT2_CHECKPOINT_PATH=/path/to/gpt2/pretrained/weights | |
| transformers-cli convert --model_type gpt2 \ | |
| --tf_checkpoint $OPENAI_GPT2_CHECKPOINT_PATH \ | |
| --pytorch_dump_output $PYTORCH_DUMP_OUTPUT \ | |
| [--config OPENAI_GPT2_CONFIG] \ | |
| [--finetuning_task_name OPENAI_GPT2_FINETUNED_TASK] | |
| ``` | |
| ## Transformer-XL | |
| Here is an example of the conversion process for a pre-trained Transformer-XL model (see [here](https://github.com/kimiyoung/transformer-xl/tree/master/tf#obtain-and-evaluate-pretrained-sota-models)) | |
| ```bash | |
| export TRANSFO_XL_CHECKPOINT_FOLDER_PATH=/path/to/transfo/xl/checkpoint | |
| transformers-cli convert --model_type transfo_xl \ | |
| --tf_checkpoint $TRANSFO_XL_CHECKPOINT_FOLDER_PATH \ | |
| --pytorch_dump_output $PYTORCH_DUMP_OUTPUT \ | |
| [--config TRANSFO_XL_CONFIG] \ | |
| [--finetuning_task_name TRANSFO_XL_FINETUNED_TASK] | |
| ``` | |
| ## XLNet | |
| Here is an example of the conversion process for a pre-trained XLNet model: | |
| ```bash | |
| export TRANSFO_XL_CHECKPOINT_PATH=/path/to/xlnet/checkpoint | |
| export TRANSFO_XL_CONFIG_PATH=/path/to/xlnet/config | |
| transformers-cli convert --model_type xlnet \ | |
| --tf_checkpoint $TRANSFO_XL_CHECKPOINT_PATH \ | |
| --config $TRANSFO_XL_CONFIG_PATH \ | |
| --pytorch_dump_output $PYTORCH_DUMP_OUTPUT \ | |
| [--finetuning_task_name XLNET_FINETUNED_TASK] \ | |
| ``` | |
| ## XLM | |
| Here is an example of the conversion process for a pre-trained XLM model: | |
| ```bash | |
| export XLM_CHECKPOINT_PATH=/path/to/xlm/checkpoint | |
| transformers-cli convert --model_type xlm \ | |
| --tf_checkpoint $XLM_CHECKPOINT_PATH \ | |
| --pytorch_dump_output $PYTORCH_DUMP_OUTPUT | |
| [--config XML_CONFIG] \ | |
| [--finetuning_task_name XML_FINETUNED_TASK] | |
| ``` | |
| ## T5 | |
| Here is an example of the conversion process for a pre-trained T5 model: | |
| ```bash | |
| export T5=/path/to/t5/uncased_L-12_H-768_A-12 | |
| transformers-cli convert --model_type t5 \ | |
| --tf_checkpoint $T5/t5_model.ckpt \ | |
| --config $T5/t5_config.json \ | |
| --pytorch_dump_output $T5/pytorch_model.bin | |
| ``` | |