Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2021 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| import logging | |
| import os | |
| import sys | |
| from dataclasses import dataclass, field | |
| from typing import Optional | |
| import evaluate | |
| import numpy as np | |
| import torch | |
| from datasets import load_dataset | |
| from PIL import Image | |
| from torchvision.transforms import ( | |
| CenterCrop, | |
| Compose, | |
| Normalize, | |
| RandomHorizontalFlip, | |
| RandomResizedCrop, | |
| Resize, | |
| ToTensor, | |
| ) | |
| import transformers | |
| from transformers import ( | |
| MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, | |
| AutoConfig, | |
| AutoImageProcessor, | |
| AutoModelForImageClassification, | |
| HfArgumentParser, | |
| Trainer, | |
| TrainingArguments, | |
| set_seed, | |
| ) | |
| from transformers.trainer_utils import get_last_checkpoint | |
| from transformers.utils import check_min_version, send_example_telemetry | |
| from transformers.utils.versions import require_version | |
| """ Fine-tuning a 🤗 Transformers model for image classification""" | |
| logger = logging.getLogger(__name__) | |
| # Will error if the minimal version of Transformers is not installed. Remove at your own risks. | |
| check_min_version("4.28.0") | |
| require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt") | |
| MODEL_CONFIG_CLASSES = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) | |
| MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) | |
| def pil_loader(path: str): | |
| with open(path, "rb") as f: | |
| im = Image.open(f) | |
| return im.convert("RGB") | |
| class DataTrainingArguments: | |
| """ | |
| Arguments pertaining to what data we are going to input our model for training and eval. | |
| Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify | |
| them on the command line. | |
| """ | |
| dataset_name: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." | |
| }, | |
| ) | |
| dataset_config_name: Optional[str] = field( | |
| default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | |
| ) | |
| train_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the training data."}) | |
| validation_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the validation data."}) | |
| train_val_split: Optional[float] = field( | |
| default=0.15, metadata={"help": "Percent to split off of train for validation."} | |
| ) | |
| max_train_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of training examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| max_eval_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of evaluation examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| def __post_init__(self): | |
| if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): | |
| raise ValueError( | |
| "You must specify either a dataset name from the hub or a train and/or validation directory." | |
| ) | |
| class ModelArguments: | |
| """ | |
| Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
| """ | |
| model_name_or_path: str = field( | |
| default="google/vit-base-patch16-224-in21k", | |
| metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}, | |
| ) | |
| model_type: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, | |
| ) | |
| config_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
| ) | |
| cache_dir: Optional[str] = field( | |
| default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} | |
| ) | |
| model_revision: str = field( | |
| default="main", | |
| metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, | |
| ) | |
| image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."}) | |
| use_auth_token: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": ( | |
| "Will use the token generated when running `huggingface-cli login` (necessary to use this script " | |
| "with private models)." | |
| ) | |
| }, | |
| ) | |
| ignore_mismatched_sizes: bool = field( | |
| default=False, | |
| metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."}, | |
| ) | |
| def collate_fn(examples): | |
| pixel_values = torch.stack([example["pixel_values"] for example in examples]) | |
| labels = torch.tensor([example["labels"] for example in examples]) | |
| return {"pixel_values": pixel_values, "labels": labels} | |
| def main(): | |
| # See all possible arguments in src/transformers/training_args.py | |
| # or by passing the --help flag to this script. | |
| # We now keep distinct sets of args, for a cleaner separation of concerns. | |
| parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) | |
| if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
| # If we pass only one argument to the script and it's the path to a json file, | |
| # let's parse it to get our arguments. | |
| model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
| else: | |
| model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
| # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The | |
| # information sent is the one passed as arguments along with your Python/PyTorch versions. | |
| send_example_telemetry("run_image_classification", model_args, data_args) | |
| # Setup logging | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| handlers=[logging.StreamHandler(sys.stdout)], | |
| ) | |
| if training_args.should_log: | |
| # The default of training_args.log_level is passive, so we set log level at info here to have that default. | |
| transformers.utils.logging.set_verbosity_info() | |
| log_level = training_args.get_process_log_level() | |
| logger.setLevel(log_level) | |
| transformers.utils.logging.set_verbosity(log_level) | |
| transformers.utils.logging.enable_default_handler() | |
| transformers.utils.logging.enable_explicit_format() | |
| # Log on each process the small summary: | |
| logger.warning( | |
| f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" | |
| + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" | |
| ) | |
| logger.info(f"Training/evaluation parameters {training_args}") | |
| # Detecting last checkpoint. | |
| last_checkpoint = None | |
| if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: | |
| last_checkpoint = get_last_checkpoint(training_args.output_dir) | |
| if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: | |
| raise ValueError( | |
| f"Output directory ({training_args.output_dir}) already exists and is not empty. " | |
| "Use --overwrite_output_dir to overcome." | |
| ) | |
| elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: | |
| logger.info( | |
| f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " | |
| "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." | |
| ) | |
| # Set seed before initializing model. | |
| set_seed(training_args.seed) | |
| # Initialize our dataset and prepare it for the 'image-classification' task. | |
| if data_args.dataset_name is not None: | |
| dataset = load_dataset( | |
| data_args.dataset_name, | |
| data_args.dataset_config_name, | |
| cache_dir=model_args.cache_dir, | |
| task="image-classification", | |
| use_auth_token=True if model_args.use_auth_token else None, | |
| ) | |
| else: | |
| data_files = {} | |
| if data_args.train_dir is not None: | |
| data_files["train"] = os.path.join(data_args.train_dir, "**") | |
| if data_args.validation_dir is not None: | |
| data_files["validation"] = os.path.join(data_args.validation_dir, "**") | |
| dataset = load_dataset( | |
| "imagefolder", | |
| data_files=data_files, | |
| cache_dir=model_args.cache_dir, | |
| task="image-classification", | |
| ) | |
| # If we don't have a validation split, split off a percentage of train as validation. | |
| data_args.train_val_split = None if "validation" in dataset.keys() else data_args.train_val_split | |
| if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0: | |
| split = dataset["train"].train_test_split(data_args.train_val_split) | |
| dataset["train"] = split["train"] | |
| dataset["validation"] = split["test"] | |
| # Prepare label mappings. | |
| # We'll include these in the model's config to get human readable labels in the Inference API. | |
| labels = dataset["train"].features["labels"].names | |
| label2id, id2label = {}, {} | |
| for i, label in enumerate(labels): | |
| label2id[label] = str(i) | |
| id2label[str(i)] = label | |
| # Load the accuracy metric from the datasets package | |
| metric = evaluate.load("accuracy") | |
| # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a | |
| # predictions and label_ids field) and has to return a dictionary string to float. | |
| def compute_metrics(p): | |
| """Computes accuracy on a batch of predictions""" | |
| return metric.compute(predictions=np.argmax(p.predictions, axis=1), references=p.label_ids) | |
| config = AutoConfig.from_pretrained( | |
| model_args.config_name or model_args.model_name_or_path, | |
| num_labels=len(labels), | |
| label2id=label2id, | |
| id2label=id2label, | |
| finetuning_task="image-classification", | |
| cache_dir=model_args.cache_dir, | |
| revision=model_args.model_revision, | |
| use_auth_token=True if model_args.use_auth_token else None, | |
| ) | |
| model = AutoModelForImageClassification.from_pretrained( | |
| model_args.model_name_or_path, | |
| from_tf=bool(".ckpt" in model_args.model_name_or_path), | |
| config=config, | |
| cache_dir=model_args.cache_dir, | |
| revision=model_args.model_revision, | |
| use_auth_token=True if model_args.use_auth_token else None, | |
| ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, | |
| ) | |
| image_processor = AutoImageProcessor.from_pretrained( | |
| model_args.image_processor_name or model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| revision=model_args.model_revision, | |
| use_auth_token=True if model_args.use_auth_token else None, | |
| ) | |
| # Define torchvision transforms to be applied to each image. | |
| if "shortest_edge" in image_processor.size: | |
| size = image_processor.size["shortest_edge"] | |
| else: | |
| size = (image_processor.size["height"], image_processor.size["width"]) | |
| normalize = Normalize(mean=image_processor.image_mean, std=image_processor.image_std) | |
| _train_transforms = Compose( | |
| [ | |
| RandomResizedCrop(size), | |
| RandomHorizontalFlip(), | |
| ToTensor(), | |
| normalize, | |
| ] | |
| ) | |
| _val_transforms = Compose( | |
| [ | |
| Resize(size), | |
| CenterCrop(size), | |
| ToTensor(), | |
| normalize, | |
| ] | |
| ) | |
| def train_transforms(example_batch): | |
| """Apply _train_transforms across a batch.""" | |
| example_batch["pixel_values"] = [ | |
| _train_transforms(pil_img.convert("RGB")) for pil_img in example_batch["image"] | |
| ] | |
| return example_batch | |
| def val_transforms(example_batch): | |
| """Apply _val_transforms across a batch.""" | |
| example_batch["pixel_values"] = [_val_transforms(pil_img.convert("RGB")) for pil_img in example_batch["image"]] | |
| return example_batch | |
| if training_args.do_train: | |
| if "train" not in dataset: | |
| raise ValueError("--do_train requires a train dataset") | |
| if data_args.max_train_samples is not None: | |
| dataset["train"] = ( | |
| dataset["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples)) | |
| ) | |
| # Set the training transforms | |
| dataset["train"].set_transform(train_transforms) | |
| if training_args.do_eval: | |
| if "validation" not in dataset: | |
| raise ValueError("--do_eval requires a validation dataset") | |
| if data_args.max_eval_samples is not None: | |
| dataset["validation"] = ( | |
| dataset["validation"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples)) | |
| ) | |
| # Set the validation transforms | |
| dataset["validation"].set_transform(val_transforms) | |
| # Initalize our trainer | |
| trainer = Trainer( | |
| model=model, | |
| args=training_args, | |
| train_dataset=dataset["train"] if training_args.do_train else None, | |
| eval_dataset=dataset["validation"] if training_args.do_eval else None, | |
| compute_metrics=compute_metrics, | |
| tokenizer=image_processor, | |
| data_collator=collate_fn, | |
| ) | |
| # Training | |
| if training_args.do_train: | |
| checkpoint = None | |
| if training_args.resume_from_checkpoint is not None: | |
| checkpoint = training_args.resume_from_checkpoint | |
| elif last_checkpoint is not None: | |
| checkpoint = last_checkpoint | |
| train_result = trainer.train(resume_from_checkpoint=checkpoint) | |
| trainer.save_model() | |
| trainer.log_metrics("train", train_result.metrics) | |
| trainer.save_metrics("train", train_result.metrics) | |
| trainer.save_state() | |
| # Evaluation | |
| if training_args.do_eval: | |
| metrics = trainer.evaluate() | |
| trainer.log_metrics("eval", metrics) | |
| trainer.save_metrics("eval", metrics) | |
| # Write model card and (optionally) push to hub | |
| kwargs = { | |
| "finetuned_from": model_args.model_name_or_path, | |
| "tasks": "image-classification", | |
| "dataset": data_args.dataset_name, | |
| "tags": ["image-classification", "vision"], | |
| } | |
| if training_args.push_to_hub: | |
| trainer.push_to_hub(**kwargs) | |
| else: | |
| trainer.create_model_card(**kwargs) | |
| if __name__ == "__main__": | |
| main() | |