Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2021 The HuggingFace Team All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Fine-tuning the library's seq2seq models for question answering using the 🤗 Seq2SeqTrainer. | |
| """ | |
| # You can also adapt this script on your own question answering task. Pointers for this are left as comments. | |
| import logging | |
| import os | |
| import sys | |
| from dataclasses import dataclass, field | |
| from typing import List, Optional, Tuple | |
| import datasets | |
| import evaluate | |
| import numpy as np | |
| from datasets import load_dataset | |
| from trainer_seq2seq_qa import QuestionAnsweringSeq2SeqTrainer | |
| import transformers | |
| from transformers import ( | |
| AutoConfig, | |
| AutoModelForSeq2SeqLM, | |
| AutoTokenizer, | |
| DataCollatorForSeq2Seq, | |
| HfArgumentParser, | |
| Seq2SeqTrainingArguments, | |
| set_seed, | |
| ) | |
| from transformers.trainer_utils import EvalLoopOutput, EvalPrediction, get_last_checkpoint | |
| from transformers.utils import check_min_version, send_example_telemetry | |
| from transformers.utils.versions import require_version | |
| # Will error if the minimal version of Transformers is not installed. Remove at your own risks. | |
| check_min_version("4.28.0") | |
| require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt") | |
| logger = logging.getLogger(__name__) | |
| class ModelArguments: | |
| """ | |
| Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
| """ | |
| model_name_or_path: str = field( | |
| metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
| ) | |
| config_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
| ) | |
| tokenizer_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
| ) | |
| cache_dir: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "Path to directory to store the pretrained models downloaded from huggingface.co"}, | |
| ) | |
| use_fast_tokenizer: bool = field( | |
| default=True, | |
| metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, | |
| ) | |
| model_revision: str = field( | |
| default="main", | |
| metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, | |
| ) | |
| use_auth_token: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": ( | |
| "Will use the token generated when running `huggingface-cli login` (necessary to use this script " | |
| "with private models)." | |
| ) | |
| }, | |
| ) | |
| class DataTrainingArguments: | |
| """ | |
| Arguments pertaining to what data we are going to input our model for training and eval. | |
| """ | |
| dataset_name: Optional[str] = field( | |
| default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} | |
| ) | |
| dataset_config_name: Optional[str] = field( | |
| default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | |
| ) | |
| context_column: Optional[str] = field( | |
| default="context", | |
| metadata={"help": "The name of the column in the datasets containing the contexts (for question answering)."}, | |
| ) | |
| question_column: Optional[str] = field( | |
| default="question", | |
| metadata={"help": "The name of the column in the datasets containing the questions (for question answering)."}, | |
| ) | |
| answer_column: Optional[str] = field( | |
| default="answers", | |
| metadata={"help": "The name of the column in the datasets containing the answers (for question answering)."}, | |
| ) | |
| train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) | |
| validation_file: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, | |
| ) | |
| test_file: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "An optional input test data file to evaluate the perplexity on (a text file)."}, | |
| ) | |
| overwrite_cache: bool = field( | |
| default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
| ) | |
| preprocessing_num_workers: Optional[int] = field( | |
| default=None, | |
| metadata={"help": "The number of processes to use for the preprocessing."}, | |
| ) | |
| max_seq_length: int = field( | |
| default=384, | |
| metadata={ | |
| "help": ( | |
| "The maximum total input sequence length after tokenization. Sequences longer " | |
| "than this will be truncated, sequences shorter will be padded." | |
| ) | |
| }, | |
| ) | |
| max_answer_length: int = field( | |
| default=30, | |
| metadata={ | |
| "help": ( | |
| "The maximum length of an answer that can be generated. This is needed because the start " | |
| "and end predictions are not conditioned on one another." | |
| ) | |
| }, | |
| ) | |
| val_max_answer_length: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "The maximum total sequence length for validation target text after tokenization. Sequences longer " | |
| "than this will be truncated, sequences shorter will be padded. Will default to `max_answer_length`." | |
| "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " | |
| "during ``evaluate`` and ``predict``." | |
| ) | |
| }, | |
| ) | |
| pad_to_max_length: bool = field( | |
| default=True, | |
| metadata={ | |
| "help": ( | |
| "Whether to pad all samples to `max_seq_length`. If False, will pad the samples dynamically when" | |
| " batching to the maximum length in the batch (which can be faster on GPU but will be slower on TPU)." | |
| ) | |
| }, | |
| ) | |
| max_train_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of training examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| max_eval_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of evaluation examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| max_predict_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of prediction examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| version_2_with_negative: bool = field( | |
| default=False, metadata={"help": "If true, some of the examples do not have an answer."} | |
| ) | |
| null_score_diff_threshold: float = field( | |
| default=0.0, | |
| metadata={ | |
| "help": ( | |
| "The threshold used to select the null answer: if the best answer has a score that is less than " | |
| "the score of the null answer minus this threshold, the null answer is selected for this example. " | |
| "Only useful when `version_2_with_negative=True`." | |
| ) | |
| }, | |
| ) | |
| doc_stride: int = field( | |
| default=128, | |
| metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."}, | |
| ) | |
| n_best_size: int = field( | |
| default=20, | |
| metadata={"help": "The total number of n-best predictions to generate when looking for an answer."}, | |
| ) | |
| num_beams: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, " | |
| "which is used during ``evaluate`` and ``predict``." | |
| ) | |
| }, | |
| ) | |
| ignore_pad_token_for_loss: bool = field( | |
| default=True, | |
| metadata={ | |
| "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not." | |
| }, | |
| ) | |
| def __post_init__(self): | |
| if ( | |
| self.dataset_name is None | |
| and self.train_file is None | |
| and self.validation_file is None | |
| and self.test_file is None | |
| ): | |
| raise ValueError("Need either a dataset name or a training/validation file/test_file.") | |
| else: | |
| if self.train_file is not None: | |
| extension = self.train_file.split(".")[-1] | |
| assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." | |
| if self.validation_file is not None: | |
| extension = self.validation_file.split(".")[-1] | |
| assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." | |
| if self.test_file is not None: | |
| extension = self.test_file.split(".")[-1] | |
| assert extension in ["csv", "json"], "`test_file` should be a csv or a json file." | |
| if self.val_max_answer_length is None: | |
| self.val_max_answer_length = self.max_answer_length | |
| question_answering_column_name_mapping = { | |
| "squad_v2": ("question", "context", "answer"), | |
| } | |
| def main(): | |
| # See all possible arguments in src/transformers/training_args.py | |
| # or by passing the --help flag to this script. | |
| # We now keep distinct sets of args, for a cleaner separation of concerns. | |
| parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) | |
| if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
| # If we pass only one argument to the script and it's the path to a json file, | |
| # let's parse it to get our arguments. | |
| model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
| else: | |
| model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
| # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The | |
| # information sent is the one passed as arguments along with your Python/PyTorch versions. | |
| send_example_telemetry("run_seq2seq_qa", model_args, data_args) | |
| # Setup logging | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| handlers=[logging.StreamHandler(sys.stdout)], | |
| ) | |
| if training_args.should_log: | |
| # The default of training_args.log_level is passive, so we set log level at info here to have that default. | |
| transformers.utils.logging.set_verbosity_info() | |
| log_level = training_args.get_process_log_level() | |
| logger.setLevel(log_level) | |
| datasets.utils.logging.set_verbosity(log_level) | |
| transformers.utils.logging.set_verbosity(log_level) | |
| transformers.utils.logging.enable_default_handler() | |
| transformers.utils.logging.enable_explicit_format() | |
| # Log on each process the small summary: | |
| logger.warning( | |
| f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" | |
| + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" | |
| ) | |
| logger.info(f"Training/evaluation parameters {training_args}") | |
| # Detecting last checkpoint. | |
| last_checkpoint = None | |
| if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: | |
| last_checkpoint = get_last_checkpoint(training_args.output_dir) | |
| if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: | |
| raise ValueError( | |
| f"Output directory ({training_args.output_dir}) already exists and is not empty. " | |
| "Use --overwrite_output_dir to overcome." | |
| ) | |
| elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: | |
| logger.info( | |
| f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " | |
| "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." | |
| ) | |
| # Set seed before initializing model. | |
| set_seed(training_args.seed) | |
| # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) | |
| # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ | |
| # (the dataset will be downloaded automatically from the datasets Hub). | |
| # | |
| # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called | |
| # 'text' is found. You can easily tweak this behavior (see below). | |
| # | |
| # In distributed training, the load_dataset function guarantee that only one local process can concurrently | |
| # download the dataset. | |
| if data_args.dataset_name is not None: | |
| # Downloading and loading a dataset from the hub. | |
| raw_datasets = load_dataset( | |
| data_args.dataset_name, | |
| data_args.dataset_config_name, | |
| cache_dir=model_args.cache_dir, | |
| use_auth_token=True if model_args.use_auth_token else None, | |
| ) | |
| else: | |
| data_files = {} | |
| if data_args.train_file is not None: | |
| data_files["train"] = data_args.train_file | |
| extension = data_args.train_file.split(".")[-1] | |
| if data_args.validation_file is not None: | |
| data_files["validation"] = data_args.validation_file | |
| extension = data_args.validation_file.split(".")[-1] | |
| if data_args.test_file is not None: | |
| data_files["test"] = data_args.test_file | |
| extension = data_args.test_file.split(".")[-1] | |
| raw_datasets = load_dataset( | |
| extension, | |
| data_files=data_files, | |
| field="data", | |
| cache_dir=model_args.cache_dir, | |
| use_auth_token=True if model_args.use_auth_token else None, | |
| ) | |
| # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at | |
| # https://huggingface.co/docs/datasets/loading_datasets.html. | |
| # Load pretrained model and tokenizer | |
| # | |
| # Distributed training: | |
| # The .from_pretrained methods guarantee that only one local process can concurrently | |
| # download model & vocab. | |
| config = AutoConfig.from_pretrained( | |
| model_args.config_name if model_args.config_name else model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| revision=model_args.model_revision, | |
| use_auth_token=True if model_args.use_auth_token else None, | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| use_fast=model_args.use_fast_tokenizer, | |
| revision=model_args.model_revision, | |
| use_auth_token=True if model_args.use_auth_token else None, | |
| ) | |
| model = AutoModelForSeq2SeqLM.from_pretrained( | |
| model_args.model_name_or_path, | |
| from_tf=bool(".ckpt" in model_args.model_name_or_path), | |
| config=config, | |
| cache_dir=model_args.cache_dir, | |
| revision=model_args.model_revision, | |
| use_auth_token=True if model_args.use_auth_token else None, | |
| ) | |
| # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch | |
| # on a small vocab and want a smaller embedding size, remove this test. | |
| embedding_size = model.get_input_embeddings().weight.shape[0] | |
| if len(tokenizer) > embedding_size: | |
| model.resize_token_embeddings(len(tokenizer)) | |
| if model.config.decoder_start_token_id is None: | |
| raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") | |
| # Preprocessing the datasets. | |
| # We need to generate and tokenize inputs and targets. | |
| if training_args.do_train: | |
| column_names = raw_datasets["train"].column_names | |
| elif training_args.do_eval: | |
| column_names = raw_datasets["validation"].column_names | |
| elif training_args.do_predict: | |
| column_names = raw_datasets["test"].column_names | |
| else: | |
| logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.") | |
| return | |
| # Get the column names for input/target. | |
| dataset_columns = question_answering_column_name_mapping.get(data_args.dataset_name, None) | |
| if data_args.question_column is None: | |
| question_column = dataset_columns[0] if dataset_columns is not None else column_names[0] | |
| else: | |
| question_column = data_args.question_column | |
| if question_column not in column_names: | |
| raise ValueError( | |
| f"--question_column' value '{data_args.question_column}' needs to be one of: {', '.join(column_names)}" | |
| ) | |
| if data_args.context_column is None: | |
| context_column = dataset_columns[1] if dataset_columns is not None else column_names[1] | |
| else: | |
| context_column = data_args.context_column | |
| if context_column not in column_names: | |
| raise ValueError( | |
| f"--context_column' value '{data_args.context_column}' needs to be one of: {', '.join(column_names)}" | |
| ) | |
| if data_args.answer_column is None: | |
| answer_column = dataset_columns[2] if dataset_columns is not None else column_names[2] | |
| else: | |
| answer_column = data_args.answer_column | |
| if answer_column not in column_names: | |
| raise ValueError( | |
| f"--answer_column' value '{data_args.answer_column}' needs to be one of: {', '.join(column_names)}" | |
| ) | |
| # Temporarily set max_answer_length for training. | |
| max_answer_length = data_args.max_answer_length | |
| padding = "max_length" if data_args.pad_to_max_length else False | |
| if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"): | |
| logger.warning( | |
| "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for" | |
| f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory" | |
| ) | |
| if data_args.max_seq_length > tokenizer.model_max_length: | |
| logger.warning( | |
| f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" | |
| f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." | |
| ) | |
| max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) | |
| def preprocess_squad_batch( | |
| examples, | |
| question_column: str, | |
| context_column: str, | |
| answer_column: str, | |
| ) -> Tuple[List[str], List[str]]: | |
| questions = examples[question_column] | |
| contexts = examples[context_column] | |
| answers = examples[answer_column] | |
| def generate_input(_question, _context): | |
| return " ".join(["question:", _question.lstrip(), "context:", _context.lstrip()]) | |
| inputs = [generate_input(question, context) for question, context in zip(questions, contexts)] | |
| targets = [answer["text"][0] if len(answer["text"]) > 0 else "" for answer in answers] | |
| return inputs, targets | |
| def preprocess_function(examples): | |
| inputs, targets = preprocess_squad_batch(examples, question_column, context_column, answer_column) | |
| model_inputs = tokenizer(inputs, max_length=max_seq_length, padding=padding, truncation=True) | |
| # Tokenize targets with text_target=... | |
| labels = tokenizer(text_target=targets, max_length=max_answer_length, padding=padding, truncation=True) | |
| # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore | |
| # padding in the loss. | |
| if padding == "max_length" and data_args.ignore_pad_token_for_loss: | |
| labels["input_ids"] = [ | |
| [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"] | |
| ] | |
| model_inputs["labels"] = labels["input_ids"] | |
| return model_inputs | |
| # Validation preprocessing | |
| def preprocess_validation_function(examples): | |
| inputs, targets = preprocess_squad_batch(examples, question_column, context_column, answer_column) | |
| model_inputs = tokenizer( | |
| inputs, | |
| max_length=max_seq_length, | |
| padding=padding, | |
| truncation=True, | |
| return_overflowing_tokens=True, | |
| return_offsets_mapping=True, | |
| ) | |
| # Tokenize targets with the `text_target` keyword argument | |
| labels = tokenizer(text_target=targets, max_length=max_answer_length, padding=padding, truncation=True) | |
| # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore | |
| # padding in the loss. | |
| if padding == "max_length" and data_args.ignore_pad_token_for_loss: | |
| labels["input_ids"] = [ | |
| [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"] | |
| ] | |
| # Since one example might give us several features if it has a long context, we need a map from a feature to | |
| # its corresponding example. This key gives us just that. | |
| sample_mapping = model_inputs.pop("overflow_to_sample_mapping") | |
| # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the | |
| # corresponding example_id and we will store the offset mappings. | |
| model_inputs["example_id"] = [] | |
| # Augment the overflowing tokens to the labels | |
| labels_out = [] | |
| for i in range(len(model_inputs["input_ids"])): | |
| # One example can give several spans, this is the index of the example containing this span of text. | |
| sample_index = sample_mapping[i] | |
| model_inputs["example_id"].append(examples["id"][sample_index]) | |
| labels_out.append(labels["input_ids"][sample_index]) | |
| model_inputs["labels"] = labels_out | |
| return model_inputs | |
| if training_args.do_train: | |
| if "train" not in raw_datasets: | |
| raise ValueError("--do_train requires a train dataset") | |
| train_dataset = raw_datasets["train"] | |
| if data_args.max_train_samples is not None: | |
| # We will select sample from whole data if agument is specified | |
| max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
| train_dataset = train_dataset.select(range(max_train_samples)) | |
| # Create train feature from dataset | |
| with training_args.main_process_first(desc="train dataset map pre-processing"): | |
| train_dataset = train_dataset.map( | |
| preprocess_function, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| remove_columns=column_names, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| desc="Running tokenizer on train dataset", | |
| ) | |
| if data_args.max_train_samples is not None: | |
| # Number of samples might increase during Feature Creation, We select only specified max samples | |
| max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
| train_dataset = train_dataset.select(range(max_train_samples)) | |
| if training_args.do_eval: | |
| if "validation" not in raw_datasets: | |
| raise ValueError("--do_eval requires a validation dataset") | |
| eval_examples = raw_datasets["validation"] | |
| if data_args.max_eval_samples is not None: | |
| # We will select sample from whole data | |
| max_eval_samples = min(len(eval_examples), data_args.max_eval_samples) | |
| eval_examples = eval_examples.select(range(max_eval_samples)) | |
| # Validation Feature Creation | |
| with training_args.main_process_first(desc="validation dataset map pre-processing"): | |
| eval_dataset = eval_examples.map( | |
| preprocess_validation_function, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| remove_columns=column_names, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| desc="Running tokenizer on validation dataset", | |
| ) | |
| if data_args.max_eval_samples is not None: | |
| # During Feature creation dataset samples might increase, we will select required samples again | |
| max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) | |
| eval_dataset = eval_dataset.select(range(max_eval_samples)) | |
| if training_args.do_predict: | |
| if "test" not in raw_datasets: | |
| raise ValueError("--do_predict requires a test dataset") | |
| predict_examples = raw_datasets["test"] | |
| if data_args.max_predict_samples is not None: | |
| # We will select sample from whole data | |
| predict_examples = predict_examples.select(range(data_args.max_predict_samples)) | |
| # Predict Feature Creation | |
| with training_args.main_process_first(desc="prediction dataset map pre-processing"): | |
| predict_dataset = predict_examples.map( | |
| preprocess_validation_function, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| remove_columns=column_names, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| desc="Running tokenizer on prediction dataset", | |
| ) | |
| if data_args.max_predict_samples is not None: | |
| # During Feature creation dataset samples might increase, we will select required samples again | |
| max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples) | |
| predict_dataset = predict_dataset.select(range(max_predict_samples)) | |
| # Data collator | |
| label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id | |
| data_collator = DataCollatorForSeq2Seq( | |
| tokenizer, | |
| model=model, | |
| label_pad_token_id=label_pad_token_id, | |
| pad_to_multiple_of=8 if training_args.fp16 else None, | |
| ) | |
| metric = evaluate.load("squad_v2" if data_args.version_2_with_negative else "squad") | |
| def compute_metrics(p: EvalPrediction): | |
| return metric.compute(predictions=p.predictions, references=p.label_ids) | |
| # Post-processing: | |
| def post_processing_function( | |
| examples: datasets.Dataset, features: datasets.Dataset, outputs: EvalLoopOutput, stage="eval" | |
| ): | |
| # Decode the predicted tokens. | |
| preds = outputs.predictions | |
| if isinstance(preds, tuple): | |
| preds = preds[0] | |
| # Replace -100s used for padding as we can't decode them | |
| preds = np.where(preds != -100, preds, tokenizer.pad_token_id) | |
| decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) | |
| # Build a map example to its corresponding features. | |
| example_id_to_index = {k: i for i, k in enumerate(examples["id"])} | |
| feature_per_example = {example_id_to_index[feature["example_id"]]: i for i, feature in enumerate(features)} | |
| predictions = {} | |
| # Let's loop over all the examples! | |
| for example_index, example in enumerate(examples): | |
| # This is the index of the feature associated to the current example. | |
| feature_index = feature_per_example[example_index] | |
| predictions[example["id"]] = decoded_preds[feature_index] | |
| # Format the result to the format the metric expects. | |
| if data_args.version_2_with_negative: | |
| formatted_predictions = [ | |
| {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() | |
| ] | |
| else: | |
| formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()] | |
| references = [{"id": ex["id"], "answers": ex[answer_column]} for ex in examples] | |
| return EvalPrediction(predictions=formatted_predictions, label_ids=references) | |
| # Initialize our Trainer | |
| trainer = QuestionAnsweringSeq2SeqTrainer( | |
| model=model, | |
| args=training_args, | |
| train_dataset=train_dataset if training_args.do_train else None, | |
| eval_dataset=eval_dataset if training_args.do_eval else None, | |
| eval_examples=eval_examples if training_args.do_eval else None, | |
| tokenizer=tokenizer, | |
| data_collator=data_collator, | |
| compute_metrics=compute_metrics if training_args.predict_with_generate else None, | |
| post_process_function=post_processing_function, | |
| ) | |
| # Training | |
| if training_args.do_train: | |
| checkpoint = None | |
| if training_args.resume_from_checkpoint is not None: | |
| checkpoint = training_args.resume_from_checkpoint | |
| elif last_checkpoint is not None: | |
| checkpoint = last_checkpoint | |
| train_result = trainer.train(resume_from_checkpoint=checkpoint) | |
| trainer.save_model() # Saves the tokenizer too for easy upload | |
| metrics = train_result.metrics | |
| max_train_samples = ( | |
| data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) | |
| ) | |
| metrics["train_samples"] = min(max_train_samples, len(train_dataset)) | |
| trainer.log_metrics("train", metrics) | |
| trainer.save_metrics("train", metrics) | |
| trainer.save_state() | |
| # Evaluation | |
| results = {} | |
| max_length = ( | |
| training_args.generation_max_length | |
| if training_args.generation_max_length is not None | |
| else data_args.val_max_answer_length | |
| ) | |
| num_beams = data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams | |
| if training_args.do_eval: | |
| logger.info("*** Evaluate ***") | |
| metrics = trainer.evaluate(max_length=max_length, num_beams=num_beams, metric_key_prefix="eval") | |
| max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) | |
| metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) | |
| trainer.log_metrics("eval", metrics) | |
| trainer.save_metrics("eval", metrics) | |
| # Prediction | |
| if training_args.do_predict: | |
| logger.info("*** Predict ***") | |
| results = trainer.predict(predict_dataset, predict_examples) | |
| metrics = results.metrics | |
| max_predict_samples = ( | |
| data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset) | |
| ) | |
| metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset)) | |
| trainer.log_metrics("predict", metrics) | |
| trainer.save_metrics("predict", metrics) | |
| if training_args.push_to_hub: | |
| kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "question-answering"} | |
| if data_args.dataset_name is not None: | |
| kwargs["dataset_tags"] = data_args.dataset_name | |
| if data_args.dataset_config_name is not None: | |
| kwargs["dataset_args"] = data_args.dataset_config_name | |
| kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" | |
| else: | |
| kwargs["dataset"] = data_args.dataset_name | |
| trainer.push_to_hub(**kwargs) | |
| def _mp_fn(index): | |
| # For xla_spawn (TPUs) | |
| main() | |
| if __name__ == "__main__": | |
| main() | |